論文の概要: Automotive innovation landscaping using LLM
- arxiv url: http://arxiv.org/abs/2409.14436v1
- Date: Sun, 22 Sep 2024 13:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:41:53.232255
- Title: Automotive innovation landscaping using LLM
- Title(参考訳): LLMを用いた自動車イノベーション造園
- Authors: Raju Gorain, Omkar Salunke,
- Abstract要約: 本稿では,造園に必要な情報を抽出する手法について紹介する。
この結果は,オープンソース特許データを用いた燃料電池技術の展望を構築するための手法の実装を実証するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The process of landscaping automotive innovation through patent analysis is crucial for Research and Development teams. It aids in comprehending innovation trends, technological advancements, and the latest technologies from competitors. Traditionally, this process required intensive manual efforts. However, with the advent of Large Language Models (LLMs), it can now be automated, leading to faster and more efficient patent categorization & state-of-the-art of inventive concept extraction. This automation can assist various R\&D teams in extracting relevant information from extensive patent databases. This paper introduces a method based on prompt engineering to extract essential information for landscaping. The information includes the problem addressed by the patent, the technology utilized, and the area of innovation within the vehicle ecosystem (such as safety, Advanced Driver Assistance Systems and more).The result demonstrates the implementation of this method to create a landscape of fuel cell technology using open-source patent data. This approach provides a comprehensive overview of the current state of fuel cell technology, offering valuable insights for future research and development in this field.
- Abstract(参考訳): 特許分析による自動車イノベーションの造園プロセスは、研究開発チームにとって不可欠である。
イノベーションのトレンド、技術進歩、そして最新の技術をライバルから理解するのに役立ちます。
伝統的に、このプロセスには集中的な手作業が必要だった。
しかし、Large Language Models (LLMs) の出現により、自動化が可能となり、より高速で効率的な特許分類と発明的概念抽出の最先端技術へと繋がる。
この自動化は、広範囲の特許データベースから関連する情報を抽出する上で、さまざまなR&Dチームを支援することができる。
本稿では,造園に必要な情報を抽出する手法について紹介する。
この情報には、特許、利用された技術、車両エコシステム内のイノベーションの領域(安全、先進運転支援システムなど)などが含まれる。
この結果は,オープンソース特許データを用いた燃料電池技術の展望を構築するための手法の実装を実証するものである。
このアプローチは、燃料電池技術の現状を包括的に概観し、この分野における将来の研究開発に有用な洞察を提供する。
関連論文リスト
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - PatentGPT: A Large Language Model for Patent Drafting Using Knowledge-based Fine-tuning Method [1.4496326701907591]
既存の大規模言語モデル(LLM)は、専門知識の欠如とコンテキスト認識の欠如により、IP生成領域では不足することが多い。
我々は,LLMの知識微調整(KFT)のための画期的なフレームワークを提案する。
我々のモデルであるPatentGPTは、最先端モデルと比較して、特許関連のベンチマークテストで最大400%高い性能を示した。
論文 参考訳(メタデータ) (2024-08-26T12:00:29Z) - Automated Neural Patent Landscaping in the Small Data Regime [6.284464997330885]
近年の特許活動の急速な拡大により、効率的かつ効果的な自動的特許造成アプローチの必要性が高まっている。
本稿では, 難解な事例に対して, 性能を著しく向上させる, 自動型ニューラルネットワーク特許造園システムを提案する。
論文 参考訳(メタデータ) (2024-07-10T19:13:37Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - A Comprehensive Survey on AI-based Methods for Patents [14.090575139188422]
AIベースのツールは、特許サイクルにおける重要なタスクを合理化し、強化する機会を提供する。
この学際的な調査は、AIと特許分析の交差点で働く研究者や実践者のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2024-04-02T20:44:06Z) - Application-Driven Innovation in Machine Learning [56.85396167616353]
機械学習におけるアプリケーション駆動研究のパラダイムについて述べる。
このアプローチがメソッド駆動の作業と生産的に相乗効果を示す。
このようなメリットにもかかわらず、マシンラーニングにおけるレビュー、採用、教育のプラクティスが、アプリケーション主導のイノベーションを後押しすることが多いことに気付きます。
論文 参考訳(メタデータ) (2024-03-26T04:59:27Z) - Natural Language Processing in Patents: A Survey [0.0]
重要な技術的および法的情報をカプセル化した特許は、自然言語処理(NLP)アプリケーションのための豊富なドメインを提供する。
NLP技術が発展するにつれて、大規模言語モデル(LLM)は一般的なテキスト処理や生成タスクにおいて優れた能力を示してきた。
本稿は,NLP研究者に,この複雑な領域を効率的にナビゲートするために必要な知識を付与することを目的とする。
論文 参考訳(メタデータ) (2024-03-06T23:17:16Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - Patent Sentiment Analysis to Highlight Patent Paragraphs [0.0]
特許文書が与えられた場合、異なるセマンティックアノテーションを識別することは興味深い研究の側面である。
手動の特許分析の過程で、より読みやすくするために、段落をマークして意味情報を認識することが実際である。
この作業は、セマンティック情報を自動的に強調する特許実践者を支援し、機械学習の適性を利用して持続的で効率的な特許分析を作成するのに役立つ。
論文 参考訳(メタデータ) (2021-11-06T13:28:29Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
本稿では,経路計画問題に対する新しいアルゴリズムの開発に関する現在の研究動向について概説する。
これまでの研究は、特にユークリッド旅行セールスパーソン問題(ユークリッドTSP)に焦点を当ててきた。
目的は、将来ユークリッド自動車問題(ユークリッドVRP)など、同じカテゴリーの他の問題にも得られる結果を活用することである。
論文 参考訳(メタデータ) (2020-09-22T00:51:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。