論文の概要: Isometric Immersion Learning with Riemannian Geometry
- arxiv url: http://arxiv.org/abs/2409.14760v1
- Date: Mon, 23 Sep 2024 07:17:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:12:18.812150
- Title: Isometric Immersion Learning with Riemannian Geometry
- Title(参考訳): リーマン幾何学を用いた等尺的没入学習
- Authors: Zihao Chen, Wenyong Wang, Yu Xiang,
- Abstract要約: 等尺性の理論的な保証を提供する多様体学習方法はまだ存在しない。
ナッシュの等尺定理に触発され、等尺浸漬学習と呼ばれる新しい概念を導入する。
計量学習と多様体学習を同時に行う教師なしニューラルネットワークモデルを提案する。
- 参考スコア(独自算出の注目度): 4.987314374901577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manifold learning has been proven to be an effective method for capturing the implicitly intrinsic structure of non-Euclidean data, in which one of the primary challenges is how to maintain the distortion-free (isometry) of the data representations. Actually, there is still no manifold learning method that provides a theoretical guarantee of isometry. Inspired by Nash's isometric theorem, we introduce a new concept called isometric immersion learning based on Riemannian geometry principles. Following this concept, an unsupervised neural network-based model that simultaneously achieves metric and manifold learning is proposed by integrating Riemannian geometry priors. What's more, we theoretically derive and algorithmically implement a maximum likelihood estimation-based training method for the new model. In the simulation experiments, we compared the new model with the state-of-the-art baselines on various 3-D geometry datasets, demonstrating that the new model exhibited significantly superior performance in multiple evaluation metrics. Moreover, we applied the Riemannian metric learned from the new model to downstream prediction tasks in real-world scenarios, and the accuracy was improved by an average of 8.8%.
- Abstract(参考訳): マニフォールド学習は、非ユークリッドデータの暗黙的に固有の構造を捉えるのに有効な方法であることが証明されている。
実際、等尺性の理論的な保証を提供する多様体学習法はいまだ存在しない。
ナッシュの等尺定理に触発され、リーマン幾何学の原理に基づく等尺入射学習と呼ばれる新しい概念を導入する。
この概念に従うと、計量と多様体の学習を同時に達成する教師なしニューラルネットワークに基づくモデルがリーマン幾何学の先行点を統合することによって提案される。
さらに,新たなモデルに対する最大推定に基づくトレーニング手法を理論的に導出し,アルゴリズム的に実装する。
シミュレーション実験では,新しいモデルと各種3次元幾何データセットの最先端ベースラインを比較し,新しいモデルが複数の評価指標において有意に優れた性能を示した。
さらに,新しいモデルから学習したリーマン計量を実世界のシナリオにおける下流予測タスクに適用し,平均8.8%の精度で精度を向上した。
関連論文リスト
- Score-based pullback Riemannian geometry [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
データサポートを通して高品質な測地学を作成し、データ多様体の固有次元を確実に推定する。
我々のフレームワークは、訓練中に等方性正規化を採用することで、自然に異方性正規化フローで使用することができる。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
本稿ではReLUのような非微分可能活性化関数の事例について検討する。
最近の2つの研究は、ニューラルネットワークを研究するための幾何学的枠組みを導入した。
本稿では,画像の分類と熱力学問題に関する数値実験を行った。
論文 参考訳(メタデータ) (2024-04-09T08:11:46Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
モデルに依存しない新しい物理探索のための機械学習手法を提案する。
対応するアルゴリズムは、最近のカーネルメソッドの大規模実装によって実現されている。
トレーニング時間や計算資源の観点から、ニューラルネットワークの実装と比較して、我々のアプローチは劇的なアドバンテージがあることが示される。
論文 参考訳(メタデータ) (2022-04-05T16:17:59Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
本稿では、一般化線形モデルのための新しい非パラメトリック方法論を紹介する。
これは二項回帰の強さとカテゴリーデータに対する潜在変数の定式化の強さを組み合わせたものである。
これは最近公開された方法論のパラメトリックバージョンを拡張し、一般化する。
論文 参考訳(メタデータ) (2021-10-11T04:49:59Z) - A prior-based approximate latent Riemannian metric [3.716965622352967]
本研究では,単純かつ効率的かつ堅牢な生成モデルの潜在空間におけるサーロゲート共形生成メトリックを提案する。
提案する計量の挙動を理論的に解析し,実際に使用することは理にかなっていることを示す。
また,提案手法を生命科学におけるデータ分析に適用する可能性を示す。
論文 参考訳(メタデータ) (2021-03-09T08:31:52Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。