論文の概要: Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks
- arxiv url: http://arxiv.org/abs/2308.02137v1
- Date: Fri, 4 Aug 2023 05:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 13:50:46.562878
- Title: Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks
- Title(参考訳): 物理対応畳み込みニューラルネットワークを用いた二次元非圧縮性ナビエ・ストークス方程式の解作用素の学習
- Authors: Viktor Grimm, Alexander Heinlein, Axel Klawonn
- Abstract要約: パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the concept of introducing physics to machine learning has
become widely popular. Most physics-inclusive ML-techniques however are still
limited to a single geometry or a set of parametrizable geometries. Thus, there
remains the need to train a new model for a new geometry, even if it is only
slightly modified. With this work we introduce a technique with which it is
possible to learn approximate solutions to the steady-state Navier--Stokes
equations in varying geometries without the need of parametrization. This
technique is based on a combination of a U-Net-like CNN and well established
discretization methods from the field of the finite difference method.The
results of our physics-aware CNN are compared to a state-of-the-art data-based
approach. Additionally, it is also shown how our approach performs when
combined with the data-based approach.
- Abstract(参考訳): 近年,機械学習に物理を導入するという概念が広く普及している。
しかし、物理に特有なmlテクニークのほとんどは、依然として単一の幾何学やパラメトリブルなジオメトリに制限されている。
したがって、たとえわずかに修正されていなくても、新しい幾何学のための新しいモデルをトレーニングする必要がある。
本研究では,パラメトリゼーションを必要とせず,種々の幾何学における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
本手法は, 有限差分法の分野におけるU-NetライクなCNNとよく確立された離散化手法を組み合わせたもので, 物理認識型CNNの結果を最先端のデータベース手法と比較する。
さらに、データベースのアプローチと組み合わせることで、我々のアプローチがどのように機能するかを示す。
関連論文リスト
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は,物理モデルからの数学的演算子として物理ブロックを,フィードフォワード層を構成する学習ブロックと組み合わせる。
従来のニューラルネットワーク方式と比較して,本手法はデータ要求量を大幅に減らして一般化性を向上させる。
論文 参考訳(メタデータ) (2024-11-18T11:58:20Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
偏微分方程式の解法としてグラフニューラルネットワークを用いることを正当化する。
古典的数値解法と物理インフォームド・フレームワークを組み合わせることで、別の手法を提案する。
本稿では,不規則な幾何学上の3次元問題に対して検証を行う手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T09:46:12Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physical Gradients for Deep Learning [101.36788327318669]
最先端のトレーニング技術は、物理的なプロセスに関わる多くの問題に適していないことが分かりました。
本稿では,高次最適化手法と機械学習手法を組み合わせた新しいハイブリッドトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-30T12:14:31Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。