論文の概要: Towards Real-world Deployment of NILM Systems: Challenges and Practices
- arxiv url: http://arxiv.org/abs/2409.14821v1
- Date: Mon, 23 Sep 2024 08:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:50:08.895536
- Title: Towards Real-world Deployment of NILM Systems: Challenges and Practices
- Title(参考訳): NILMシステムの現実展開に向けて:課題と実践
- Authors: Junyu Xue, Yu Zhang, Xudong Wang, Yi Wang, Guoming Tang,
- Abstract要約: 我々は,エッジクラウドのコラボレーションを通じて,NILMシステムの現実的な適用性を高めるための3層フレームワークを提案する。
エッジとクラウドの両方で利用可能な計算資源を考慮すると、エッジに軽量なNILMモデル、クラウドにディープラーニングベースのモデルを実装します。
差分モデルの実装に加えて、GunicornとNGINXを統合したNILM固有のデプロイメントスキームも設計する。
- 参考スコア(独自算出の注目度): 13.773788692956845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-intrusive load monitoring (NILM), as a key load monitoring technology, can much reduce the deployment cost of traditional power sensors. Previous research has largely focused on developing cloud-exclusive NILM algorithms, which often result in high computation costs and significant service delays. To address these issues, we propose a three-tier framework to enhance the real-world applicability of NILM systems through edge-cloud collaboration. Considering the computational resources available at both the edge and cloud, we implement a lightweight NILM model at the edge and a deep learning based model at the cloud, respectively. In addition to the differential model implementations, we also design a NILM-specific deployment scheme that integrates Gunicorn and NGINX to bridge the gap between theoretical algorithms and practical applications. To verify the effectiveness of the proposed framework, we apply real-world NILM scenario settings and implement the entire process of data acquisition, model training, and system deployment. The results demonstrate that our framework can achieve high decomposition accuracy while significantly reducing the cloud workload and communication overhead under practical considerations.
- Abstract(参考訳): 非侵入負荷監視(NILM)は、従来の電力センサの展開コストを大幅に削減することができる。
これまでの研究は主に、クラウド排他的NILMアルゴリズムの開発に重点を置いてきた。
これらの課題に対処するため,エッジクラウドコラボレーションを通じて,NILMシステムの現実的な適用性を高めるための3層フレームワークを提案する。
エッジとクラウドの両方で利用可能な計算資源を考慮すると、エッジに軽量なNILMモデル、クラウドにディープラーニングベースのモデルを実装します。
差分モデルの実装に加えて、GunicornとNGINXを統合したNILM固有のデプロイメントスキームを設計して、理論アルゴリズムと実用的なアプリケーション間のギャップを埋める。
提案フレームワークの有効性を検証するため,実世界のNILMシナリオ設定を適用し,データ取得,モデルトレーニング,システム展開のプロセス全体を実装した。
その結果,本フレームワークは,クラウドの負荷と通信オーバーヘッドを大幅に低減しつつ,高い分解精度を達成できることが示唆された。
関連論文リスト
- Benchmarking Active Learning for NILM [2.896640219222859]
非侵入負荷モニタリング(NILM)は、家電固有の用途に家庭の電力消費を分散させることに焦点を当てている。
多くの高度なNILM法は、通常大量のラベル付きアプライアンスデータを必要とするニューラルネットワークに基づいている。
限られた住宅に家電モニターを選択的に設置するための能動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T12:22:59Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Reservoir computing for system identification and predictive control with limited data [3.1484174280822845]
我々は、ベンチマーク制御システムの力学を学習し、モデル予測制御(MPC)の代理モデルとして機能するRNN変種の評価を行う。
エコー状態ネットワーク(ESN)は、計算複雑性の低減、より有効な予測時間、MPC目的関数のコスト削減など、競合するアーキテクチャよりも様々な利点がある。
論文 参考訳(メタデータ) (2024-10-23T21:59:07Z) - Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data [5.460776507522276]
非侵入負荷モニタリング(NILM)は、エネルギー意識を高め、エネルギープログラム設計のための貴重な洞察を提供する。
既存のNILM法は、しばしば高サンプリング複雑な信号データを取得するための特殊な装置に依存している。
そこで本研究では,12種類の機器の負荷分散を実現するために,容易にアクセス可能な気象データを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:04:49Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:48:50Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Measuring what Really Matters: Optimizing Neural Networks for TinyML [7.455546102930911]
ニューラルネットワーク(NN)は、アーキテクチャと計算の複雑さが前例のない成長を遂げた。
NNをリソース制約のあるデバイスに導入することで、コスト効率の高いデプロイメント、広範な可用性、機密データの保存が可能になる。
この作業は、ユビキタスなARM Cortex-Mアーキテクチャに焦点を当てた、機械学習をMCUに持ち込むという課題に対処する。
論文 参考訳(メタデータ) (2021-04-21T17:14:06Z) - A Federated Learning Framework for Non-Intrusive Load Monitoring [0.1657441317977376]
非侵入負荷モニタリング (NILM) は, 家庭用電力消費の総読み出しを家電製品に分解することを目的としている。
NILMデータを所有しているユーティリティやDNO間のデータ連携はますます重要になっている。
フェデレーションラーニング(FL)によるNILMのパフォーマンス向上のためのフレームワークが構築されました。
論文 参考訳(メタデータ) (2021-04-04T14:24:50Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。