論文の概要: AIM 2024 Challenge on Video Saliency Prediction: Methods and Results
- arxiv url: http://arxiv.org/abs/2409.14827v1
- Date: Mon, 23 Sep 2024 08:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:50:08.827105
- Title: AIM 2024 Challenge on Video Saliency Prediction: Methods and Results
- Title(参考訳): AIM 2024 ビデオ・サリエンシ予測の課題:方法と結果
- Authors: Andrey Moskalenko, Alexey Bryncev, Dmitry Vatolin, Radu Timofte, Gen Zhan, Li Yang, Yunlong Tang, Yiting Liao, Jiongzhi Lin, Baitao Huang, Morteza Moradi, Mohammad Moradi, Francesco Rundo, Concetto Spampinato, Ali Borji, Simone Palazzo, Yuxin Zhu, Yinan Sun, Huiyu Duan, Yuqin Cao, Ziheng Jia, Qiang Hu, Xiongkuo Min, Guangtao Zhai, Hao Fang, Runmin Cong, Xiankai Lu, Xiaofei Zhou, Wei Zhang, Chunyu Zhao, Wentao Mu, Tao Deng, Hamed R. Tavakoli,
- Abstract要約: 本稿では,AIM 2024におけるビデオ・サリエンシ予測の課題について概説する。
参加者の目標は、提供されたビデオシーケンスのセットに対して正確な精度マップを予測する方法を開発することであった。
- 参考スコア(独自算出の注目度): 105.09572982350532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reviews the Challenge on Video Saliency Prediction at AIM 2024. The goal of the participants was to develop a method for predicting accurate saliency maps for the provided set of video sequences. Saliency maps are widely exploited in various applications, including video compression, quality assessment, visual perception studies, the advertising industry, etc. For this competition, a previously unused large-scale audio-visual mouse saliency (AViMoS) dataset of 1500 videos with more than 70 observers per video was collected using crowdsourced mouse tracking. The dataset collection methodology has been validated using conventional eye-tracking data and has shown high consistency. Over 30 teams registered in the challenge, and there are 7 teams that submitted the results in the final phase. The final phase solutions were tested and ranked by commonly used quality metrics on a private test subset. The results of this evaluation and the descriptions of the solutions are presented in this report. All data, including the private test subset, is made publicly available on the challenge homepage - https://challenges.videoprocessing.ai/challenges/video-saliency-prediction.html.
- Abstract(参考訳): 本稿では,AIM 2024におけるビデオ・サリエンシ予測の課題について概説する。
参加者の目標は、提供されたビデオシーケンスのセットに対して正確な精度マップを予測する方法を開発することであった。
唾液マップは、ビデオ圧縮、品質評価、視覚知覚研究、広告業界など、様々なアプリケーションで広く利用されている。
この競争のために、これまで使われていなかった大規模オーディオ視覚マウスサリエンシ(AViMoS)データセットが、クラウドソースされたマウストラッキングを使用して、1ビデオあたり70人以上のオブザーバーで収集された。
データセット収集手法は、従来のアイトラッキングデータを用いて検証され、高い一貫性を示している。
チャレンジに登録された30以上のチームと、最終フェーズに結果を提出した7つのチームがあります。
最終フェーズソリューションは、プライベートテストサブセットで一般的に使用される品質指標によってテストされ、ランク付けされた。
本報告では, この評価結果とソリューションの説明について述べる。
プライベートテストサブセットを含むすべてのデータは、チャレンジホームページ(https://challenges.videoprocessing.ai/challenges/video-saliency-prediction.html)で公開されている。
関連論文リスト
- AIM 2024 Challenge on Video Super-Resolution Quality Assessment: Methods and Results [76.64868221556145]
本稿では,AIM(Advanceds in Image Manipulation)ワークショップの一環として,ビデオ・スーパーリゾリューション(SR)品質アセスメント(QA)チャレンジについて紹介する。
この課題の課題は、現代の画像とビデオ-SRアルゴリズムを用いて、2xと4xのアップスケールされたビデオのための客観的QA手法を開発することである。
SR QAの目標は、従来のQA手法の適用範囲が限られているという難題が証明された、最先端のSR QAを前進させることであった。
論文 参考訳(メタデータ) (2024-10-05T16:42:23Z) - AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results [120.95863275142727]
本稿では,ECCV 2024における画像操作の進歩(AIM)ワークショップと共同で開催されている圧縮映像品質評価の課題について述べる。
この課題は、様々な圧縮標準の14コーデックで符号化された459本の動画の多様なデータセット上で、VQA法の性能を評価することであった。
論文 参考訳(メタデータ) (2024-08-21T20:32:45Z) - NTIRE 2024 Challenge on Short-form UGC Video Quality Assessment: Methods and Results [216.73187673659675]
NTIRE 2024 Challenge on Shortform Video Quality Assessment (S-UGC VQA) をレビューする。
KVQデータベースはトレーニング用2926本、検証用420本、テスト用854本を含む3つのパートに分けられる。
目的は、新しいベンチマークを構築し、S-UGC VQAの開発を進めることである。
論文 参考訳(メタデータ) (2024-04-17T12:26:13Z) - NTIRE 2023 Quality Assessment of Video Enhancement Challenge [97.809937484099]
NTIRE 2023 Quality Assessment of Video Enhancement Challengeについて報告する。
課題は、ビデオ処理分野における大きな課題、すなわち、強化されたビデオに対するビデオ品質評価(VQA)に対処することである。
参加者数は167名。
論文 参考訳(メタデータ) (2023-07-19T02:33:42Z) - AIM 2019 Challenge on Video Temporal Super-Resolution: Methods and
Results [129.15554076593762]
本稿では,ビデオ時空間超解像(フレーム)におけるAIMの最初の課題についてレビューする。
低フレームレート(15fps)のビデオシーケンスから、チャレンジ参加者はより高いフレームレート(60fps)のビデオシーケンスを提出するよう求められる。
ハンドヘルドカメラで撮影した多様なビデオから得られたREDS VTSRデータセットをトレーニングおよび評価目的で使用した。
論文 参考訳(メタデータ) (2020-05-04T01:51:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。