論文の概要: Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely
- arxiv url: http://arxiv.org/abs/2409.14924v1
- Date: Mon, 23 Sep 2024 11:20:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 15:26:12.901555
- Title: Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely
- Title(参考訳): Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs using external data more Wisely
- Authors: Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K. Qiu, Lili Qiu,
- Abstract要約: 外部データで拡張された大規模言語モデル(LLM)は、現実世界のタスクを完了させる際、顕著な能力を示した。
Retrieval-Augmented Generation (RAG) とファインチューニングが注目され、広く応用されている。
しかし、データ拡張LDMを様々な専門分野に効果的に展開することは、重大な課題である。
- 参考スコア(独自算出の注目度): 8.507599833330346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks. Techniques for integrating external data into LLMs, such as Retrieval-Augmented Generation (RAG) and fine-tuning, are gaining increasing attention and widespread application. Nonetheless, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges. These challenges encompass a wide range of issues, from retrieving relevant data and accurately interpreting user intent to fully harnessing the reasoning capabilities of LLMs for complex tasks. We believe that there is no one-size-fits-all solution for data-augmented LLM applications. In practice, underperformance often arises from a failure to correctly identify the core focus of a task or because the task inherently requires a blend of multiple capabilities that must be disentangled for better resolution. In this survey, we propose a RAG task categorization method, classifying user queries into four levels based on the type of external data required and primary focus of the task: explicit fact queries, implicit fact queries, interpretable rationale queries, and hidden rationale queries. We define these levels of queries, provide relevant datasets, and summarize the key challenges and most effective techniques for addressing these challenges. Finally, we discuss three main forms of integrating external data into LLMs: context, small model, and fine-tuning, highlighting their respective strengths, limitations, and the types of problems they are suited to solve. This work aims to help readers thoroughly understand and decompose the data requirements and key bottlenecks in building LLM applications, offering solutions to the different challenges and serving as a guide to systematically developing such applications.
- Abstract(参考訳): 外部データで拡張された大規模言語モデル(LLM)は、現実世界のタスクを完了させる際、顕著な能力を示した。
Retrieval-Augmented Generation (RAG) やファインチューニングなど,外部データをLCMに統合する技術が注目され,広く普及している。
それでも、データ拡張LDMを様々な専門分野に効果的に展開することは、重大な課題である。
これらの課題は、関連するデータを取得することや、ユーザーの意図を正確に解釈することから、複雑なタスクにLLMの推論能力を完全に活用することまで、幅広い問題を含んでいる。
データ拡張 LLM アプリケーションには,全サイズ対応のソリューションがない,と私たちは信じています。
実際には、アンダーパフォーマンスは、タスクのコアフォーカスを正しく識別できないことや、タスクが本質的に、より良い解決のために切り離さなければならない複数の機能のブレンドを必要とするため、しばしば発生します。
本稿では,要求される外部データの種類とタスクの主焦点に基づいて,ユーザクエリを4つのレベルに分類するRAGタスク分類手法を提案する。
これらのレベルのクエリを定義し、関連するデータセットを提供し、これらの課題に対処するための主要な課題と最も効果的なテクニックを要約します。
最後に、外部データをLLMに統合する3つの主要な形態について論じる:コンテキスト、小さなモデル、微調整。
この研究は、読者がLLMアプリケーション構築におけるデータ要件と主要なボトルネックを深く理解し分解し、異なる課題に対するソリューションを提供し、そのようなアプリケーションを体系的に開発するためのガイドとして機能することを目的としています。
関連論文リスト
- Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data [6.195658947075431]
HoloBenchは、テキストベースのコンテキストにデータベース推論操作をもたらすフレームワークです。
本研究では,文脈内の情報量が文脈長よりもLCLMの性能に大きく影響していることを示す。
複数の情報の集約を必要とするタスクは、コンテキスト長が増加するにつれて顕著な精度低下を示す。
論文 参考訳(メタデータ) (2024-10-15T19:04:13Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Defining Boundaries: A Spectrum of Task Feasibility for Large Language Models [6.008311204104302]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示しているが、多くの場合、その知識や能力を超えるクエリを処理できない。
本稿では,LLMが能力を超えるために必要なスキルのために,実用不可能なタスクを認識し,拒否する必要性に対処する。
論文 参考訳(メタデータ) (2024-08-11T22:58:23Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
TACTには、1つ以上のテキストに散らばる縫合情報を要求する難しい命令が含まれている。
既存のテキストと関連するテーブルのデータセットを活用することで、このデータセットを構築します。
現代のLLMはいずれも,このデータセットでは性能が悪く,精度が38%以下であることが実証された。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Towards leveraging LLMs for Conditional QA [1.9649272351760063]
本研究では,条件付き質問応答の挑戦領域におけるLarge Language Models(LLM)の機能と限界について考察する。
これらの結果から,全ての入力コンテキストを完全にエンコードすることなく,微調整LDMがSOTA(State-of-the-art (SOTA))性能を上回ることが判明した。
これらのモデルは、抽出された質問応答において、SOTAを10ポイント以上遅れる問題に遭遇し、偽情報を注入するリスクを軽減する。
論文 参考訳(メタデータ) (2023-12-02T14:02:52Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。