論文の概要: A Method for Building Large Language Models with Predefined KV Cache Capacity
- arxiv url: http://arxiv.org/abs/2411.15785v1
- Date: Sun, 24 Nov 2024 11:30:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:47.068571
- Title: A Method for Building Large Language Models with Predefined KV Cache Capacity
- Title(参考訳): KVキャッシュ容量を予め定義した大規模言語モデル構築手法
- Authors: Zhonghua Yi, Ge Niu, Lei Wang, Wei Tang, Liqiu Zhang,
- Abstract要約: 本稿では、無限コンテキストを扱う場合の従来のKVキャッシュにおける過大なメモリ消費の問題に対処するために、固定長のKVキャッシュを導入する。
キー値ベクトル列を動的に更新することにより、限られたキャッシュ容量内で効率的な推論を実現する。
実験の結果,提案手法は推論品質を維持しながらメモリ使用量を大幅に削減することがわかった。
- 参考スコア(独自算出の注目度): 11.710667043543545
- License:
- Abstract: This paper proposes a method for building large language models with predefined Key-Value (KV) cache capacity, particularly suitable for the attention layers in Transformer decode-only architectures. This method introduces fixed-length KV caches to address the issue of excessive memory consumption in traditional KV caches when handling infinite contexts. By dynamically updating the key-value vector sequences, it achieves efficient inference within limited cache capacity, significantly reducing memory usage while maintaining model performance and system throughput. Experimental results show that this method significantly reduces memory usage while maintaining the model's inference quality.
- Abstract(参考訳): 本稿では,キーバリュー(KV)キャッシュ容量を予め定義した大規模言語モデルを構築する手法を提案する。
固定長KVキャッシュを導入し、無限コンテキストを扱う場合の従来のKVキャッシュの過大なメモリ消費の問題に対処する。
キー値ベクトル列を動的に更新することにより、限られたキャッシュ容量内で効率的な推論を実現し、モデル性能とシステムスループットを維持しながらメモリ使用量を大幅に削減する。
実験の結果,提案手法は推論品質を維持しながらメモリ使用量を大幅に削減することがわかった。
関連論文リスト
- KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Inference-Friendly Models With MixAttention [7.103010772135246]
MixAttentionは、最近のトークンの小さなサブセットだけをKVキャッシュに格納するスライディングウィンドウアテンションと、レイヤ間のKVキャッシュ共有を組み合わせたものだ。
実験により,MixAttentionはメモリ使用量を大幅に削減し,短文タスクと長文タスクの両方においてモデル性能を犠牲にすることなく推論速度を向上することを示した。
論文 参考訳(メタデータ) (2024-09-23T13:37:25Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Layer-Condensed KV Cache for Efficient Inference of Large Language Models [44.24593677113768]
少数の層のKVのみを計算・キャッシュする新しい手法を提案する。
提案手法は標準変圧器よりも最大26$times$高いスループットを実現する。
論文 参考訳(メタデータ) (2024-05-17T08:59:46Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。