Enhancing Scientific Reproducibility Through Automated BioCompute Object Creation Using Retrieval-Augmented Generation from Publications
- URL: http://arxiv.org/abs/2409.15076v1
- Date: Mon, 23 Sep 2024 14:51:22 GMT
- Title: Enhancing Scientific Reproducibility Through Automated BioCompute Object Creation Using Retrieval-Augmented Generation from Publications
- Authors: Sean Kim, Raja Mazumder,
- Abstract summary: The IEEE Biocompute Object (BCO) standard addresses the need but faces adoption challenges due to the overhead of creating compliant documentation.
This paper presents a novel approach to automate the creation of BCOs from scientific papers using Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs)
The implementation incorporates optimized retrieval processes, including a two-pass retrieval with re-ranking, and employs carefully engineered prompts for each BCO domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth in computational power and accessibility has transformed the complexity and scale of bioinformatics research, necessitating standardized documentation for transparency, reproducibility, and regulatory compliance. The IEEE BioCompute Object (BCO) standard addresses this need but faces adoption challenges due to the overhead of creating compliant documentation, especially for legacy research. This paper presents a novel approach to automate the creation of BCOs from scientific papers using Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs). We describe the development of the BCO assistant tool that leverages RAG to extract relevant information from source papers and associated code repositories, addressing key challenges such as LLM hallucination and long-context understanding. The implementation incorporates optimized retrieval processes, including a two-pass retrieval with re-ranking, and employs carefully engineered prompts for each BCO domain. We discuss the tool's architecture, extensibility, and evaluation methods, including automated and manual assessment approaches. The BCO assistant demonstrates the potential to significantly reduce the time and effort required for retroactive documentation of bioinformatics research while maintaining compliance with the standard. This approach opens avenues for AI-assisted scientific documentation and knowledge extraction from publications thereby enhancing scientific reproducibility. The BCO assistant tool and documentation is available at https://biocompute-objects.github.io/bco-rag/.
Related papers
- NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
We introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization.
We employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction.
arXiv Detail & Related papers (2024-10-29T14:45:12Z) - Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source.
The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval.
The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors.
arXiv Detail & Related papers (2024-10-21T12:21:49Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets.
We use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents.
We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks.
arXiv Detail & Related papers (2024-09-03T17:54:40Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - Automated Extraction and Maturity Analysis of Open Source Clinical Informatics Repositories from Scientific Literature [0.0]
This study introduces an automated methodology to bridge the gap by systematically extracting GitHub repository URLs from academic papers indexed in arXiv.
Our approach encompasses querying the arXiv API for relevant papers, cleaning extracted GitHub URLs, fetching comprehensive repository information via the GitHub API, and analyzing repository maturity based on defined metrics such as stars, forks, open issues, and contributors.
arXiv Detail & Related papers (2024-03-20T17:06:51Z) - RepoAgent: An LLM-Powered Open-Source Framework for Repository-level
Code Documentation Generation [79.83270415843857]
We introduce RepoAgent, a large language model powered open-source framework aimed at proactively generating, maintaining, and updating code documentation.
We have validated the effectiveness of our approach, showing that RepoAgent excels in generating high-quality repository-level documentation.
arXiv Detail & Related papers (2024-02-26T15:39:52Z) - Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models [18.984165679347026]
Self-BioRAG is a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses.
We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens.
arXiv Detail & Related papers (2024-01-27T02:29:42Z) - A Study on Training and Developing Large Language Models for Behavior
Tree Generation [22.632022793663516]
This paper presents an innovative exploration of the application potential of large language models (LLM)
The core contribution of this paper lies in the design of a BT generation framework based on LLM.
In order to ensure the effectiveness and executability of the generated BTs, we emphasize the importance of data verification.
arXiv Detail & Related papers (2024-01-16T03:28:29Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.