論文の概要: The Computational Mechanisms of Detached Mindfulness
- arxiv url: http://arxiv.org/abs/2409.15289v1
- Date: Tue, 3 Sep 2024 21:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:16:59.196947
- Title: The Computational Mechanisms of Detached Mindfulness
- Title(参考訳): 切り離されたマインドフルネスの計算機構
- Authors: Brendan Conway-Smith, Robert L. West,
- Abstract要約: 分離マインドフルネス(detached mindfulness)は、認知心理学において特に効果的な治療法である。
研究は抑うつと不安を減らすために分離されたマインドフルネスの能力を強く支持する一方で、その認知と計算の基盤はほとんど説明がつかないままである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the computational mechanisms underlying a type of metacognitive monitoring known as detached mindfulness, a particularly effective therapeutic technique within cognitive psychology. While research strongly supports the capacity of detached mindfulness to reduce depression and anxiety, its cognitive and computational underpinnings remain largely unexplained. We employ a computational model of metacognitive skill to articulate the mechanisms through which a detached perception of affect reduces emotional reactivity.
- Abstract(参考訳): 本稿では,認知心理学における特に効果的な治療手法である,離脱マインドフルネス(detached mindfulness)として知られるメタ認知モニタリングの基盤となる計算機構について検討する。
研究は抑うつと不安を減らすために分離されたマインドフルネスの能力を強く支持する一方で、その認知と計算の基盤はほとんど説明がつかないままである。
我々はメタ認知能力の計算モデルを用いて、感情の反応性を低下させるメカニズムを明確化する。
関連論文リスト
- Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data [0.0]
瞳孔の大きさは認知作業負荷の貴重な指標であり、自律神経系によって支配される注意の変化と覚醒を反映している。
本研究では、機械学習を用いて個人が経験した認知イベントを自動的に検出する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-18T04:54:46Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
この研究は、抑うつのリスクがある個人を特定するために、ロマタイズド・シンハラのソーシャルメディアデータの利用を探求する。
言語パターン、感情、行動の手がかりを分析することにより、抑うつ症状の自動スクリーニングのための機械学習ベースのフレームワークが提示される。
論文 参考訳(メタデータ) (2024-03-28T10:31:09Z) - Metacognitive threshold: a computational account [0.0]
本稿では,メタ認知しきい値の計算的説明方法を検討する。
本研究は,この閾値がメタ認知的訓練と覚醒によって影響される可能性のある認知メカニズムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T01:07:19Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
マルチモーダルインタラクション, 感情計算, 自然言語処理において, 選ばれたカンファレンスから16,000以上の論文を調査した。
本論文では,感情関連論文910を同定し,情緒現象の役割について分析した。
我々は、人間の社会的行動や認知状態の機械的理解を高めるために、AIシステムによって感情と感情の予測がどのように使用されるかについて、限られた研究結果を得た。
論文 参考訳(メタデータ) (2023-05-18T09:08:39Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
社会的推論は、心の理論(ToM)の能力を必要とする。
ToMに対する最近の機械学習アプローチは、観察者が過去を読み、他のエージェントの振る舞いを提示するように訓練できることを実証している。
我々は,新たなニューラルメモリ機構を組み込んで符号化し,階層的な注意を払って他者に関する情報を選択的に検索することで,課題に対処する。
この結果、ToMMYは心的プロセスについての仮定をほとんど行わずに理性を学ぶマインドモデルである。
論文 参考訳(メタデータ) (2023-01-17T14:48:58Z) - Learning Human Cognitive Appraisal Through Reinforcement Memory Unit [63.83306892013521]
逐次評価タスクにおける人間の認知評価の効果を生かしたリカレントニューラルネットワークのためのメモリ強調機構を提案する。
記憶増強機構を2つの正および負の強化記憶とともに評価状態を含む強化記憶ユニット(RMU)として概念化する。
論文 参考訳(メタデータ) (2022-08-06T08:56:55Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Learning by Active Forgetting for Neural Networks [36.47528616276579]
記憶と忘れのメカニズムは、人間の学習記憶システムにおいて、同じコインの2つの側面である。
現代の機械学習システムは、記憶を良くすることで、生涯にわたる学習能力を持つ機械を育むために取り組んできた。
本稿では,ニューラルネットワークを用いた能動的記憶機構による学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-21T14:55:03Z) - Hierarchical principles of embodied reinforcement learning: A review [11.613306236691427]
すべての重要な認知メカニズムが独立した計算アーキテクチャで独立に実装されていることを示す。
我々は,より洗練された認知的インスパイアされた階層的手法の開発を導くことを期待する。
論文 参考訳(メタデータ) (2020-12-18T10:19:38Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。