Introducing ELLIPS: An Ethics-Centered Approach to Research on LLM-Based Inference of Psychiatric Conditions
- URL: http://arxiv.org/abs/2409.15323v1
- Date: Fri, 6 Sep 2024 12:27:38 GMT
- Title: Introducing ELLIPS: An Ethics-Centered Approach to Research on LLM-Based Inference of Psychiatric Conditions
- Authors: Roberta Rocca, Giada Pistilli, Kritika Maheshwari, Riccardo Fusaroli,
- Abstract summary: This paper charts the ethical landscape of research on language-based inference of psychopathology.
We identify seven core ethical principles that should guide model development and deployment.
We translate these principles into questions that can guide researchers' choices.
- Score: 0.6174527525452624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As mental health care systems worldwide struggle to meet demand, there is increasing focus on using language models to infer neuropsychiatric conditions or psychopathological traits from language production. Yet, so far, this research has only delivered solutions with limited clinical applicability, due to insufficient consideration of ethical questions crucial to ensuring the synergy between possible applications and model design. To accelerate progress towards clinically applicable models, our paper charts the ethical landscape of research on language-based inference of psychopathology and provides a practical tool for researchers to navigate it. We identify seven core ethical principles that should guide model development and deployment in this domain, translate them into ELLIPS, an ethical toolkit operationalizing these principles into questions that can guide researchers' choices with respect to data selection, architectures, evaluation, and model deployment, and provide a case study exemplifying its use. With this, we aim to facilitate the emergence of model technology with concrete potential for real-world applicability.
Related papers
- A Tutorial on Clinical Speech AI Development: From Data Collection to Model Validation [19.367198670893778]
This tutorial paper provides an overview of the key components required for robust development of clinical speech AI.
The goal is to provide comprehensive guidance on building models whose inputs and outputs link to the more interpretable and clinically meaningful aspects of speech.
arXiv Detail & Related papers (2024-10-29T00:58:15Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - Clinical Insights: A Comprehensive Review of Language Models in Medicine [1.5020330976600738]
The study traces the evolution of LLMs from their foundational technologies to the latest developments in domain-specific models and multimodal integration.
The paper discusses both the opportunities these technologies present for enhancing clinical efficiency and the challenges they pose in terms of ethics, data privacy, and implementation.
arXiv Detail & Related papers (2024-08-21T15:59:33Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - An Introduction to Natural Language Processing Techniques and Framework
for Clinical Implementation in Radiation Oncology [1.2714439146420664]
We present state-of-the-art NLP applications that employ large language models (LLMs) in radiation oncology research.
LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation.
Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.
arXiv Detail & Related papers (2023-11-03T19:32:35Z) - Ethical Aspects of ChatGPT in Software Engineering Research [4.0594888788503205]
ChatGPT can improve Software Engineering (SE) research practices by offering efficient, accessible information analysis and synthesis based on natural language interactions.
However, ChatGPT could bring ethical challenges, encompassing plagiarism, privacy, data security, and the risk of generating biased or potentially detrimental data.
This research aims to fill the given gap by elaborating on the key elements: motivators, demotivators, and ethical principles of using ChatGPT in SE research.
arXiv Detail & Related papers (2023-06-13T06:13:21Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.