Visualization of Deep Transfer Learning In SAR Imagery
- URL: http://arxiv.org/abs/2103.11061v1
- Date: Sat, 20 Mar 2021 00:16:15 GMT
- Title: Visualization of Deep Transfer Learning In SAR Imagery
- Authors: Abu Md Niamul Taufique, Navya Nagananda, Andreas Savakis
- Abstract summary: We consider transfer learning to leverage deep features from a network trained on an EO ships dataset.
By exploring the network activations in the form of class-activation maps, we gain insight on how a deep network interprets a new modality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) imagery has diverse applications in land and
marine surveillance. Unlike electro-optical (EO) systems, these systems are not
affected by weather conditions and can be used in the day and night times. With
the growing importance of SAR imagery, it would be desirable if models trained
on widely available EO datasets can also be used for SAR images. In this work,
we consider transfer learning to leverage deep features from a network trained
on an EO ships dataset and generate predictions on SAR imagery. Furthermore, by
exploring the network activations in the form of class-activation maps (CAMs),
we visualize the transfer learning process to SAR imagery and gain insight on
how a deep network interprets a new modality.
Related papers
- Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
This research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery.
The results show significant improvements in interpretability, making SAR data more accessible for analysts familiar with EO imagery.
Our research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery, offering a novel tool for enhanced data interpretation.
arXiv Detail & Related papers (2024-09-07T14:31:46Z) - Towards SAR Automatic Target Recognition MultiCategory SAR Image Classification Based on Light Weight Vision Transformer [11.983317593939688]
This paper tries to apply a lightweight vision transformer based model to classify SAR images.
The entire structure was verified by an open-accessed SAR data set.
arXiv Detail & Related papers (2024-05-18T11:24:52Z) - StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging [48.30281861646519]
We introduce StreakNet-Arch, a novel signal processing architecture designed for Underwater Carrier LiDAR-Radar (UCLR) imaging systems.
StreakNet-Arch formulates the signal processing as a real-time, end-to-end binary classification task.
We present a method for embedding streak-tube camera images into attention networks, effectively acting as a learned bandpass filter.
arXiv Detail & Related papers (2024-04-14T06:19:46Z) - Land Use Prediction using Electro-Optical to SAR Few-Shot Transfer
Learning [16.71560262537924]
Deep learning methods can facilitate the analysis of different satellite modalities, such as electro-optical (EO) and synthetic aperture radar (SAR) imagery.
We show how distributional alignment of neural network embeddings can produce powerful transfer learning models by employing a sliced Wasserstein distance (SWD) loss.
In an application to few-shot Local Climate Zone (LCZ) prediction, we show that these networks outperform multiple common baselines on datasets with a large number of classes.
arXiv Detail & Related papers (2022-12-04T22:41:25Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems.
It is now possible to automate detection of dark vessels day or night, under all-weather conditions.
xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission.
arXiv Detail & Related papers (2022-06-02T06:53:45Z) - An Empirical Study of Remote Sensing Pretraining [117.90699699469639]
We conduct an empirical study of remote sensing pretraining (RSP) on aerial images.
RSP can help deliver distinctive performances in scene recognition tasks.
RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, but it may still suffer from task discrepancies.
arXiv Detail & Related papers (2022-04-06T13:38:11Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - RDAnet: A Deep Learning Based Approach for Synthetic Aperture Radar
Image Formation [0.0]
We train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline.
Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm.
arXiv Detail & Related papers (2020-01-22T18:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.