論文の概要: Fuzzy Rule based Intelligent Cardiovascular Disease Prediction using Complex Event Processing
- arxiv url: http://arxiv.org/abs/2409.15372v1
- Date: Thu, 19 Sep 2024 16:36:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:30:54.768554
- Title: Fuzzy Rule based Intelligent Cardiovascular Disease Prediction using Complex Event Processing
- Title(参考訳): 複合イベント処理を用いたファジィ規則に基づくインテリジェント心血管疾患予測
- Authors: Shashi Shekhar Kumar, Anurag Harsh, Ritesh Chandra, Sonali Agarwal,
- Abstract要約: 心血管疾患 (CVD) は、不健康な食事、身体活動の欠如、その他の要因により、急速に世界的な懸念が高まっている。
最近の研究は、リスクと死亡率を減らすための正確でタイムリーな病気予測に焦点を当てている。
本稿では,リアルタイム意思決定支援のためのファジィルールに基づく臨床データ監視システムを提案する。
- 参考スコア(独自算出の注目度): 0.8668211481067458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular disease (CVDs) is a rapidly rising global concern due to unhealthy diets, lack of physical activity, and other factors. According to the World Health Organization (WHO), primary risk factors include elevated blood pressure, glucose, blood lipids, and obesity. Recent research has focused on accurate and timely disease prediction to reduce risk and fatalities, often relying on predictive models trained on large datasets, which require intensive training. An intelligent system for CVDs patients could greatly assist in making informed decisions by effectively analyzing health parameters. Complex Event Processing (CEP) has emerged as a valuable method for solving real-time challenges by aggregating patterns of interest and their causes and effects on end users. In this work, we propose a fuzzy rule-based system for monitoring clinical data to provide real-time decision support. We designed fuzzy rules based on clinical and WHO standards to ensure accurate predictions. Our integrated approach uses Apache Kafka and Spark for data streaming, and the Siddhi CEP engine for event processing. Additionally, we pass numerous cardiovascular disease-related parameters through CEP engines to ensure fast and reliable prediction decisions. To validate the effectiveness of our approach, we simulated real-time, unseen data to predict cardiovascular disease. Using synthetic data (1000 samples), we categorized it into "Very Low Risk, Low Risk, Medium Risk, High Risk, and Very High Risk." Validation results showed that 20% of samples were categorized as very low risk, 15-45% as low risk, 35-65% as medium risk, 55-85% as high risk, and 75% as very high risk.
- Abstract(参考訳): 心血管疾患 (CVD) は、不健康な食事、身体活動の欠如、その他の要因により、急速に世界的な懸念が高まっている。
世界保健機関(WHO)によると、主なリスク要因は血圧上昇、グルコース、血液脂質、肥満である。
最近の研究は、リスクと死亡率を減らすための正確でタイムリーな病気予測に焦点を当てており、多くの場合、集中的なトレーニングを必要とする大規模なデータセットでトレーニングされた予測モデルに依存している。
CVD患者のためのインテリジェントなシステムは、健康パラメータを効果的に分析することで、情報的な意思決定を大いに支援することができる。
複雑なイベント処理(CEP)は、関心のパターンとその原因と影響をエンドユーザに集約することで、リアルタイムの課題を解決するための貴重な方法として登場した。
本研究では,臨床データを監視するファジィルールに基づくファジィシステムを提案する。
臨床およびWHOの基準に基づいてファジィルールを設計し,正確な予測を行った。
データストリーミングにはApache KafkaとSparkを使用し、イベント処理にはSiddhi CEPエンジンを使用します。
さらに, 循環器疾患関連パラメータをCEPエンジンに導入し, 迅速かつ信頼性の高い予測決定を確実にする。
本手法の有効性を検証するため,心臓血管疾患の予測のために,リアルタイムで見えないデータをシミュレートした。
合成データ(1000サンプル)を用いて「非常に低いリスク、低いリスク、中リスク、高いリスク、非常に高いリスク」に分類した。
検証の結果、試料の20%が非常に低いリスク、15-45%が低いリスク、35-65%が中リスク、55-85%が高いリスク、75%が非常に高いリスクに分類された。
関連論文リスト
- TCKAN:A Novel Integrated Network Model for Predicting Mortality Risk in Sepsis Patients [0.0]
セプシスは世界的な健康上の脅威となり、毎年何百万人もの死者を出し、経済的にかなりのコストがかかる。
現在のメソッドは通常、定数、時間、ICDコードのいずれかの1種類のデータしか利用しない。
Time-Constant Kolmogorov-Arnold Network (TCKAN)は、時間的データ、定数データ、ICDコードを単一の予測モデルに統合する。
論文 参考訳(メタデータ) (2024-07-09T05:37:50Z) - Event-Based Contrastive Learning for Medical Time Series [11.696805672885798]
Event-Based Contrastive Learning (EBCL) は異種患者データの埋め込みを学習する手法である。
EBCLが重要な下流タスクの性能向上をもたらすモデルを構築するのに利用できることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:50:24Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
脳波データを用いた心停止後コマトース患者の神経学的予後の枠組みを提案する。
我々のフレームワークは、患者レベルの累積頻度関数を推定する形で競合するリスクをサポートする動的生存分析モデルを使用する。
我々は,922人の実際のデータセット上で競合するリスクをサポートする3つの既存動的生存分析モデルをベンチマークすることで,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2023-08-17T03:46:23Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
本研究は, 患者の診断にはアクセスできない, バイタルサイン, 検査値, 既往歴にアクセス可能な患者リスクモデルについて考察する。
このようなすべての原因のリスクモデルが、診断全体にわたって良い一般化を持つが、予測可能な障害モードを持つことが示される。
患者診断の不確実性から生じるリスク予測の不確実性を明示的にモデル化し,この問題に対する対策を提案する。
論文 参考訳(メタデータ) (2023-06-29T23:36:04Z) - CARNA: Characterizing Advanced heart failure Risk and hemodyNAmic
phenotypes using learned multi-valued decision diagrams [6.599394944440605]
CARNAは、進行心不全に対する血行動態のリスク層化および表現型化の枠組みである。
機械学習による多値決定図(MVDD)の説明可能性と表現性を利用する。
侵襲的な血行動態を組み込んでおり、欠落したデータの予測を行うことができる。
論文 参考訳(メタデータ) (2023-06-11T22:56:59Z) - Predicting adverse outcomes following catheter ablation treatment for
atrial fibrillation [2.202746751854349]
AFに対するカテーテルアブレーション治療後の予後予測モデルを構築した。
伝統的および深層生存モデルは、大きな出血、心不全、脳卒中、心停止、死の複合を予測するために訓練された。
論文 参考訳(メタデータ) (2022-11-22T02:55:51Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。