From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding
- URL: http://arxiv.org/abs/2409.15503v3
- Date: Wed, 13 Nov 2024 10:02:25 GMT
- Title: From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding
- Authors: Henri Arno, Paloma Rabaey, Thomas Demeester,
- Abstract summary: This paper examines the performance of meta-learners when confounding variables are expressed in text.
We show that learners using pre-trained text representations of confounders achieve improved CATE estimates.
Due to the entangled nature of the text embeddings, these models do not fully match the performance of meta-learners with perfect confounder knowledge.
- Score: 7.5348062792
- License:
- Abstract: One of the central goals of causal machine learning is the accurate estimation of heterogeneous treatment effects from observational data. In recent years, meta-learning has emerged as a flexible, model-agnostic paradigm for estimating conditional average treatment effects (CATE) using any supervised model. This paper examines the performance of meta-learners when the confounding variables are expressed in text. Through synthetic data experiments, we show that learners using pre-trained text representations of confounders, in addition to tabular background variables, achieve improved CATE estimates compared to those relying solely on the tabular variables, particularly when sufficient data is available. However, due to the entangled nature of the text embeddings, these models do not fully match the performance of meta-learners with perfect confounder knowledge. These findings highlight both the potential and the limitations of pre-trained text representations for causal inference and open up interesting avenues for future research.
Related papers
- Relation-based Counterfactual Data Augmentation and Contrastive Learning for Robustifying Natural Language Inference Models [0.0]
We propose a method in which we use token-based and sentence-based augmentation methods to generate counterfactual sentence pairs.
We show that the proposed method can improve the performance and robustness of the NLI model.
arXiv Detail & Related papers (2024-10-28T03:43:25Z) - Word Matters: What Influences Domain Adaptation in Summarization? [43.7010491942323]
This paper investigates the fine-grained factors affecting domain adaptation performance.
We propose quantifying dataset learning difficulty as the learning difficulty of generative summarization.
Our experiments conclude that, when considering dataset learning difficulty, the cross-domain overlap and the performance gain in summarization tasks exhibit an approximate linear relationship.
arXiv Detail & Related papers (2024-06-21T02:15:49Z) - Text Serialization and Their Relationship with the Conventional Paradigms of Tabular Machine Learning [0.0]
This study explores how Language Models (LMs) can be used for feature representation and prediction in machine learning tasks.
Our study assesses how emerging LM technologies compare with traditional paradigms in tabular machine learning.
Our findings reveal current pre-trained models should not replace conventional approaches.
arXiv Detail & Related papers (2024-06-19T21:19:37Z) - Dissecting vocabulary biases datasets through statistical testing and
automated data augmentation for artifact mitigation in Natural Language
Inference [3.154631846975021]
We focus on investigating dataset artifacts and developing strategies to address these issues.
We propose several automatic data augmentation strategies spanning character to word levels.
Experiments demonstrate that the proposed approaches effectively enhance model accuracy and reduce biases by up to 0.66% and 1.14%, respectively.
arXiv Detail & Related papers (2023-12-14T08:46:26Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
"influence scores" are used to identify important subsets of data.
In this paper, we explore the applicability of influence scores in language classification tasks.
arXiv Detail & Related papers (2023-11-27T20:19:22Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.