Generalization vs. Specialization under Concept Shift
- URL: http://arxiv.org/abs/2409.15582v1
- Date: Mon, 23 Sep 2024 22:30:28 GMT
- Title: Generalization vs. Specialization under Concept Shift
- Authors: Alex Nguyen, David J. Schwab, Vudtiwat Ngampruetikorn,
- Abstract summary: Machine learning models are often brittle under distribution shift.
We show that test performance can exhibit a nonmonotonic data dependence, even when double descent is absent.
Experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
- Score: 12.196508752999797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models are often brittle under distribution shift, i.e., when data distributions at test time differ from those during training. Understanding this failure mode is central to identifying and mitigating safety risks of mass adoption of machine learning. Here we analyze ridge regression under concept shift -- a form of distribution shift in which the input-label relationship changes at test time. We derive an exact expression for prediction risk in the high-dimensional limit. Our results reveal nontrivial effects of concept shift on generalization performance, depending on the properties of robust and nonrobust features of the input. We show that test performance can exhibit a nonmonotonic data dependence, even when double descent is absent. Finally, our experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
Related papers
- Multiple Descents in Unsupervised Learning: The Role of Noise, Domain Shift and Anomalies [14.399035468023161]
We study the presence of double descent in unsupervised learning, an area that has received little attention and is not yet fully understood.
We use synthetic and real data and identify model-wise, epoch-wise, and sample-wise double descent for various applications.
arXiv Detail & Related papers (2024-06-17T16:24:23Z) - Exploring Data Augmentations on Self-/Semi-/Fully- Supervised
Pre-trained Models [24.376036129920948]
We investigate how data augmentation affects performance of vision pre-trained models.
We apply 4 types of data augmentations termed with Random Erasing, CutOut, CutMix and MixUp.
We report their performance on vision tasks such as image classification, object detection, instance segmentation, and semantic segmentation.
arXiv Detail & Related papers (2023-10-28T23:46:31Z) - Even Small Correlation and Diversity Shifts Pose Dataset-Bias Issues [19.4921353136871]
We study two types of distribution shifts: diversity shifts, which occur when test samples exhibit patterns unseen during training, and correlation shifts, which occur when test data present a different correlation between seen invariant and spurious features.
We propose an integrated protocol to analyze both types of shifts using datasets where they co-exist in a controllable manner.
arXiv Detail & Related papers (2023-05-09T23:40:23Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
Covariate shift is a significant obstacle in the development of robust machine learning models.
We present a theoretical understanding in context of modern machine learning.
arXiv Detail & Related papers (2021-11-16T05:23:28Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
A spurious correlation' is the dependence of a model on some aspect of the input data that an analyst thinks shouldn't matter.
In machine learning, these have a know-it-when-you-see-it character.
We study stress testing using the tools of causal inference.
arXiv Detail & Related papers (2021-05-31T14:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.