論文の概要: Quantum DeepONet: Neural operators accelerated by quantum computing
- arxiv url: http://arxiv.org/abs/2409.15683v1
- Date: Tue, 24 Sep 2024 02:53:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 11:19:39.649632
- Title: Quantum DeepONet: Neural operators accelerated by quantum computing
- Title(参考訳): 量子DeepONet: 量子コンピューティングによって加速されるニューラル演算子
- Authors: Pengpeng Xiao, Muqing Zheng, Anran Jiao, Xiu Yang, Lu Lu,
- Abstract要約: 本稿では,DeepONet評価の高速化に量子コンピューティングを活用することを提案する。
我々は,反微分演算子,対流方程式,バーガース方程式など,様々なPDEを用いて量子DeepONetをベンチマークする。
- 参考スコア(独自算出の注目度): 1.4918461320598675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of computational science and engineering, constructing models that reflect real-world phenomena requires solving partial differential equations (PDEs) with different conditions. Recent advancements in neural operators, such as deep operator network (DeepONet), which learn mappings between infinite-dimensional function spaces, promise efficient computation of PDE solutions for a new condition in a single forward pass. However, classical DeepONet entails quadratic complexity concerning input dimensions during evaluation. Given the progress in quantum algorithms and hardware, here we propose to utilize quantum computing to accelerate DeepONet evaluations, yielding complexity that is linear in input dimensions. Our proposed quantum DeepONet integrates unary encoding and orthogonal quantum layers. We benchmark our quantum DeepONet using a variety of PDEs, including the antiderivative operator, advection equation, and Burgers' equation. We demonstrate the method's efficacy in both ideal and noisy conditions. Furthermore, we show that our quantum DeepONet can also be informed by physics, minimizing its reliance on extensive data collection. Quantum DeepONet will be particularly advantageous in applications in outer loop problems which require to explore parameter space and solving the corresponding PDEs, such as uncertainty quantification and optimal experimental design.
- Abstract(参考訳): 計算科学と工学の領域では、実世界の現象を反映するモデルを構築するには、異なる条件で偏微分方程式(PDE)を解く必要がある。
無限次元関数空間間の写像を学習するディープ演算子ネットワーク(DeepONet)のようなニューラル演算子の最近の進歩は、単一のフォワードパスにおける新しい条件に対するPDE解の効率的な計算を約束する。
しかし、古典的なDeepONetは、評価中に入力次元に関する二次的な複雑さを必要とする。
本稿では,量子アルゴリズムとハードウェアの進歩を踏まえ,DeepONet評価の高速化に量子コンピューティングを活用することを提案する。
提案する量子DeepONetは、一元符号化と直交量子層を統合している。
我々は,反微分演算子,対流方程式,バーガース方程式など,様々なPDEを用いて量子DeepONetをベンチマークする。
理想的条件と雑音条件の両方において,本手法の有効性を示す。
さらに、我々の量子DeepONetは物理によっても情報を得ることができ、広範囲なデータ収集への依存を最小限に抑えることができることを示す。
量子DeepONetは、パラメータ空間を探索し、不確かさの定量化や最適実験設計のような対応するPDEを解決する必要がある外ループ問題において特に有利である。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
時間進化作用素は、量子コンピュータにおける化学実験の正確な計算において重要な役割を果たす。
我々は、運動エネルギー演算子の量子化のための新しい符号化法、すなわち量子近似時間発展法(QATE)を提案している。
論文 参考訳(メタデータ) (2023-10-05T05:25:38Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Fourier Networks for Solving Parametric PDEs [4.409836695738518]
近年、FNO(Fourier Neural Operator)と呼ばれるディープラーニングアーキテクチャは、入力としての初期条件に対して与えられたPDEファミリーの解を学習できることが判明した。
本稿では,古典的FNOにインスパイアされた量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-27T12:21:02Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
波長割当問題を解くための量子インスピレーションアルゴリズムを提案し,開発する。
本研究は,電気通信における現実的な問題に対する量子インスパイアされたアルゴリズムの活用の道筋をたどるものである。
論文 参考訳(メタデータ) (2022-11-01T07:52:47Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - A semi-agnostic ansatz with variable structure for quantum machine learning [0.3774866290142281]
変分量子アルゴリズム(VQA)は、短期量子コンピュータをプログラミングするための強力で柔軟なパラダイムを提供する。
本稿では,VQAのためのアンサーゼを構築するための可変構造アプローチを提案する。
我々は、凝縮物質および量子化学応用のための変分量子固有解法にVAnを用いる。
論文 参考訳(メタデータ) (2021-03-11T14:58:40Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
エネルギーの古典的方法の量子アナログである縮約固有値方程式の量子解法を導入する。
量子シミュレータと2つのIBM量子処理ユニットで計算を行う。
論文 参考訳(メタデータ) (2020-04-23T18:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。