The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards
- URL: http://arxiv.org/abs/2409.15922v2
- Date: Wed, 23 Oct 2024 03:22:48 GMT
- Title: The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards
- Authors: Sukai Huang, Nir Lipovetzky, Trevor Cohn,
- Abstract summary: Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents.
Our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic rewards.
We introduce BiMI, a novel reward function designed to mitigate noise.
- Score: 34.636688162807836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents to follow instructions, our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic (exploration-driven) rewards, contradicting expectations set by recent work. We hypothesize that false positive rewards -- instances where unintended trajectories are incorrectly rewarded -- are more detrimental than false negatives. Our analysis confirms this hypothesis, revealing that the widely used cosine similarity metric is prone to false positive reward estimates. To address this, we introduce BiMI ({Bi}nary {M}utual {I}nformation), a novel reward function designed to mitigate noise. BiMI significantly enhances learning efficiency across diverse and challenging embodied navigation environments. Our findings offer a nuanced understanding of how different types of reward noise impact agent learning and highlight the importance of addressing multimodal reward signal noise when training embodied agents
Related papers
- CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
This work aims to tackle a major challenge in offline Inverse Reinforcement Learning (IRL)
We devise a principled algorithm (namely CLARE) that solves offline IRL efficiently via integrating "conservatism" into a learned reward function.
Our theoretical analysis provides an upper bound on the return gap between the learned policy and the expert policy.
arXiv Detail & Related papers (2023-02-09T17:16:29Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - The Effects of Reward Misspecification: Mapping and Mitigating
Misaligned Models [85.68751244243823]
Reward hacking -- where RL agents exploit gaps in misspecified reward functions -- has been widely observed, but not yet systematically studied.
We investigate reward hacking as a function of agent capabilities: model capacity, action space resolution, observation space noise, and training time.
We find instances of phase transitions: capability thresholds at which the agent's behavior qualitatively shifts, leading to a sharp decrease in the true reward.
arXiv Detail & Related papers (2022-01-10T18:58:52Z) - Learning Long-Term Reward Redistribution via Randomized Return
Decomposition [18.47810850195995]
We consider the problem formulation of episodic reinforcement learning with trajectory feedback.
It refers to an extreme delay of reward signals, in which the agent can only obtain one reward signal at the end of each trajectory.
We propose a novel reward redistribution algorithm, randomized return decomposition (RRD), to learn a proxy reward function for episodic reinforcement learning.
arXiv Detail & Related papers (2021-11-26T13:23:36Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
Training agents usually requires reward functions, but rewards are seldom available in practice and their engineering is challenging and laborious.
We propose semi-supervised learning algorithms that learn from limited annotations and incorporate unlabelled data.
In our experiments with a simulated robotic arm, we greatly improve upon behavioural cloning and closely approach the performance achieved with ground truth rewards.
arXiv Detail & Related papers (2020-12-12T20:06:15Z) - Learning Guidance Rewards with Trajectory-space Smoothing [22.456737935789103]
Long-term temporal credit assignment is an important challenge in deep reinforcement learning.
Existing policy-gradient and Q-learning algorithms rely on dense environmental rewards that provide rich short-term supervision.
Recent works have proposed algorithms to learn dense "guidance" rewards that could be used in place of the sparse or delayed environmental rewards.
arXiv Detail & Related papers (2020-10-23T23:55:06Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - Reward Design in Cooperative Multi-agent Reinforcement Learning for
Packet Routing [8.021402935358488]
We study reward design problem in cooperative multi-agent reinforcement learning (MARL) based on packet routing environments.
We show that the above two reward signals are prone to produce suboptimal policies.
We design some mixed reward signals, which are off-the-shelf to learn better policies.
arXiv Detail & Related papers (2020-03-05T02:27:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.