The Distributional Reward Critic Framework for Reinforcement Learning Under Perturbed Rewards
- URL: http://arxiv.org/abs/2401.05710v3
- Date: Mon, 10 Mar 2025 21:30:07 GMT
- Title: The Distributional Reward Critic Framework for Reinforcement Learning Under Perturbed Rewards
- Authors: Xi Chen, Zhihui Zhu, Andrew Perrault,
- Abstract summary: The reward signal plays a central role in defining the desired behaviors of agents in reinforcement learning.<n>We introduce a distributional reward critic framework for estimating reward distributions and perturbations during training.<n>Our results broaden and deepen our ability to perform RL in reward-perturbed environments.
- Score: 31.550669983576544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reward signal plays a central role in defining the desired behaviors of agents in reinforcement learning (RL). Rewards collected from realistic environments could be perturbed, corrupted, or noisy due to an adversary, sensor error, or because they come from subjective human feedback. Thus, it is important to construct agents that can learn under such rewards. Existing methodologies for this problem make strong assumptions, including that the perturbation is known in advance, clean rewards are accessible, or that the perturbation preserves the optimal policy. We study a new, more general, class of unknown perturbations, and introduce a distributional reward critic framework for estimating reward distributions and perturbations during training. Our proposed methods are compatible with any RL algorithm. Despite their increased generality, we show that they achieve comparable or better rewards than existing methods in a variety of environments, including those with clean rewards. Under the challenging and generalized perturbations we study, we win/tie the highest return in 44/48 tested settings (compared to 11/48 for the best baseline). Our results broaden and deepen our ability to perform RL in reward-perturbed environments.
Related papers
- The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards [31.806143589311652]
Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents.
Our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic rewards.
We introduce BiMI, a novel reward function designed to mitigate noise.
arXiv Detail & Related papers (2024-09-24T09:45:20Z) - Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations around Unknown Marginals [28.94461817548213]
We prove upper and matching lower bounds on the possible trade-offs in the performance of learning in conditionally benign and arbitrary environments.
We are the first to obtain instance-dependent bounds for causal bandits, by reducing the problem to the linear bandit setting.
arXiv Detail & Related papers (2024-07-01T04:12:15Z) - The Perils of Optimizing Learned Reward Functions: Low Training Error Does Not Guarantee Low Regret [64.04721528586747]
In reinforcement learning, specifying reward functions that capture the intended task can be very challenging.
In this paper, we mathematically show that a sufficiently low expected test error of the reward model guarantees low worst-case regret.
We then show that similar problems persist even when using policy regularization techniques, commonly employed in methods such as RLHF.
arXiv Detail & Related papers (2024-06-22T06:43:51Z) - Reinforcement Learning from Bagged Reward [46.16904382582698]
In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent.
In many real-world scenarios, designing immediate reward signals is difficult.
We propose a novel reward redistribution method equipped with a bidirectional attention mechanism.
arXiv Detail & Related papers (2024-02-06T07:26:44Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.
Recent methods aim to mitigate misalignment by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Reward Certification for Policy Smoothed Reinforcement Learning [14.804252729195513]
Reinforcement Learning (RL) has achieved remarkable success in safety-critical areas.
Recent studies have introduced "smoothed policies" in order to enhance its robustness.
It is still challenging to establish a provable guarantee to certify the bound of its total reward.
arXiv Detail & Related papers (2023-12-11T15:07:58Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Reward Learning as Doubly Nonparametric Bandits: Optimal Design and
Scaling Laws [22.099915149343957]
We propose a theoretical framework for studying reward learning and the associated optimal experiment design problem.
We first derive non-asymptotic excess risk bounds for a simple plug-in estimator based on ridge regression.
We then solve the query design problem by optimizing these risk bounds with respect to the choice of query set and obtain a finite sample statistical rate.
arXiv Detail & Related papers (2023-02-23T22:07:33Z) - Internally Rewarded Reinforcement Learning [22.01249652558878]
We study a class of reinforcement learning problems where the reward signals for policy learning are generated by an internal reward model.
We show that the proposed reward function can consistently stabilize the training process by reducing the impact of reward noise.
arXiv Detail & Related papers (2023-02-01T06:25:46Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Causal Confusion and Reward Misidentification in Preference-Based Reward
Learning [33.944367978407904]
We study causal confusion and reward misidentification when learning from preferences.
We find that the presence of non-causal distractor features, noise in the stated preferences, and partial state observability can all exacerbate reward misidentification.
arXiv Detail & Related papers (2022-04-13T18:41:41Z) - Benign Overfitting in Adversarially Robust Linear Classification [91.42259226639837]
"Benign overfitting", where classifiers memorize noisy training data yet still achieve a good generalization performance, has drawn great attention in the machine learning community.
We show that benign overfitting indeed occurs in adversarial training, a principled approach to defend against adversarial examples.
arXiv Detail & Related papers (2021-12-31T00:27:31Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Unbiased Methods for Multi-Goal Reinforcement Learning [13.807859854345834]
In multi-goal reinforcement learning, the reward for each goal is sparse, and located in a small neighborhood of the goal.
We show that Hindsight Experience Replay (HER) can converge to low-return policies by overestimating chancy outcomes.
We introduce unbiased deep Q-learning and actor-critic algorithms that can handle such infinitely sparse rewards, and test them in toy environments.
arXiv Detail & Related papers (2021-06-16T15:31:51Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
Training agents usually requires reward functions, but rewards are seldom available in practice and their engineering is challenging and laborious.
We propose semi-supervised learning algorithms that learn from limited annotations and incorporate unlabelled data.
In our experiments with a simulated robotic arm, we greatly improve upon behavioural cloning and closely approach the performance achieved with ground truth rewards.
arXiv Detail & Related papers (2020-12-12T20:06:15Z) - Adaptive Discretization for Adversarial Lipschitz Bandits [85.39106976861702]
Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces.
A central theme here is the adaptive discretization of the action space, which gradually zooms in'' on the more promising regions.
We provide the first algorithm for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds.
arXiv Detail & Related papers (2020-06-22T16:06:25Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
We introduce a theory for multi-armed bandits where the values are the modes of the reward distributions instead of the mean.
We show in simulations that our algorithms are robust to perturbation of the arms by adversarial noise sequences.
arXiv Detail & Related papers (2020-03-05T21:29:27Z) - Corruption-robust exploration in episodic reinforcement learning [76.19192549843727]
We study multi-stage episodic reinforcement learning under adversarial corruptions in both the rewards and the transition probabilities of the underlying system.
Our framework yields efficient algorithms which attain near-optimal regret in the absence of corruptions.
Notably, our work provides the first sublinear regret guarantee which any deviation from purely i.i.d. transitions in the bandit-feedback model for episodic reinforcement learning.
arXiv Detail & Related papers (2019-11-20T03:49:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.