Quantum Probability via the Method of Arbitrary Functions
- URL: http://arxiv.org/abs/2409.16457v1
- Date: Tue, 24 Sep 2024 21:00:11 GMT
- Title: Quantum Probability via the Method of Arbitrary Functions
- Authors: Liam Bonds, Brooke Burson, Kade Cicchella, Benjamin H. Feintzeig, Lynnx, Alia Yusaini,
- Abstract summary: We argue that in a toy model of quantum measurement the Born rule probabilities can be derived from the unitary Schr"odinger dynamics.
Our results establish the Born rule as a type of universal limiting behavior that is independent of the precise initial dynamical parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this paper is to apply the collection of mathematical tools known as the "method of arbitrary functions" to analyze how probability arises from quantum dynamics. We argue that in a toy model of quantum measurement the Born rule probabilities can be derived from the unitary Schr\"odinger dynamics when certain dynamical parameters are treated as themselves random variables with initial probability distributions. Specifically, we study the perturbed double well model, in which the perturbation is treated as a random variable, and we show that for arbitrary initial distributions within a certain class, the dynamics yields the Born rule probabilities in the joint limits given by long times and small values of Planck's constant (the classical limit). Our results establish the Born rule as a type of universal limiting behavior that is independent of the precise initial dynamical parameters.
Related papers
- Hidden variable theory for non-relativistic QED: the critical role of selection rules [0.0]
We propose a hidden variable theory compatible with non-relativistic quantum electrodynamics.
Our approach introduces logical variables to describe propositions about the occupation of stationary states.
It successfully describes the essential properties of individual trials.
arXiv Detail & Related papers (2024-10-23T23:25:53Z) - Is the Born rule a result of measurement noise? [0.0]
The Born rule asserts the distribution of eigenstates observed in unbiased quantum measurements, but the reason it holds remains elusive.
This manuscript discusses how the Born rule might be explained by Schrodinger equation dynamics.
arXiv Detail & Related papers (2024-07-03T14:20:11Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Spontaneous localisation from a coarse-grained deterministic and
non-unitary dynamics [0.0]
Collapse of the wave function appears to violate the quantum superposition principle as well as deterministic evolution.
Objective collapse models propose a dynamical explanation for this phenomenon, by making a non-unitary and norm-preserving modification to the Schr"odinger equation.
arXiv Detail & Related papers (2023-05-11T10:32:23Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum probability from temporal structure [0.0]
The Born probability measure describes the statistics of measurements in which observers self-locate themselves in some region of reality.
We show that quantum probabilities may be identified with fractions of a universal multiple-time wavefunction containing both causal and retrocausal temporal parts.
arXiv Detail & Related papers (2021-12-21T01:33:09Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Symmetric Informationally Complete Measurements Identify the Irreducible
Difference between Classical and Quantum Systems [0.0]
We describe a general procedure for associating a minimal informationally-complete quantum measurement (or MIC) with a set of linearly independent post-measurement quantum states.
We prove that the representation of the Born Rule obtained from a symmetric informationally-complete measurement (or SIC) minimizes this distinction in at least two senses.
arXiv Detail & Related papers (2018-05-22T16:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.