Task Addition in Multi-Task Learning by Geometrical Alignment
- URL: http://arxiv.org/abs/2409.16645v1
- Date: Wed, 25 Sep 2024 05:56:00 GMT
- Title: Task Addition in Multi-Task Learning by Geometrical Alignment
- Authors: Soorin Yim, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Chanhui Lee, Sehui Han,
- Abstract summary: We propose a task addition approach for GATE to improve performance on target tasks with limited data.
It is achieved through supervised multi-task pre-training on a large dataset, followed by the addition and training of task-specific modules for each target task.
Our experiments demonstrate the superior performance of the task addition strategy for GATE over conventional multi-task methods, with comparable computational costs.
- Score: 4.220885199861056
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Training deep learning models on limited data while maintaining generalization is one of the fundamental challenges in molecular property prediction. One effective solution is transferring knowledge extracted from abundant datasets to those with scarce data. Recently, a novel algorithm called Geometrically Aligned Transfer Encoder (GATE) has been introduced, which uses soft parameter sharing by aligning the geometrical shapes of task-specific latent spaces. However, GATE faces limitations in scaling to multiple tasks due to computational costs. In this study, we propose a task addition approach for GATE to improve performance on target tasks with limited data while minimizing computational complexity. It is achieved through supervised multi-task pre-training on a large dataset, followed by the addition and training of task-specific modules for each target task. Our experiments demonstrate the superior performance of the task addition strategy for GATE over conventional multi-task methods, with comparable computational costs.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
arXiv Detail & Related papers (2023-08-23T16:42:27Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - Highly Scalable Task Grouping for Deep Multi-Task Learning in Prediction
of Epigenetic Events [0.0]
We propose a highly scalable task grouping framework to address negative transfer.
The proposed method exploits the network weights associated with task specific classification heads.
Our results using a dataset consisting of 367 epigenetic profiles demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-09-24T00:39:51Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - On-edge Multi-task Transfer Learning: Model and Practice with
Data-driven Task Allocation [20.20889051697198]
We show that task allocation with task importance for Multi-task Transfer Learning (MTL) is a variant of the NP-complete Knapsack problem.
We propose a Data-driven Cooperative Task Allocation (DCTA) approach to solve TATIM with high computational efficiency.
Our DCTA reduces 3.24 times of processing time, and saves 48.4% energy consumption compared with the state-of-the-art when solving TATIM.
arXiv Detail & Related papers (2021-07-06T08:24:25Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.