Automating Traffic Model Enhancement with AI Research Agent
- URL: http://arxiv.org/abs/2409.16876v3
- Date: Tue, 06 May 2025 07:58:27 GMT
- Title: Automating Traffic Model Enhancement with AI Research Agent
- Authors: Xusen Guo, Xinxi Yang, Mingxing Peng, Hongliang Lu, Meixin Zhu, Hai Yang,
- Abstract summary: TR-Agent is an AI-powered framework that autonomously develops and refines traffic models.<n>We structure the research pipeline into four key stages: idea generation, theory formulation, theory evaluation, and iterative optimization.<n>Through iteratively feedback and refinement, TR-Agent improves both modeling efficiency and effectiveness.
- Score: 4.420199777075044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing efficient traffic models is crucial for optimizing modern transportation systems. However, current modeling approaches remain labor-intensive and prone to human errors due to their dependence on manual workflows. These processes typically involve extensive literature reviews, formula tuning, and iterative testing, which often lead to inefficiencies. To address this, we propose TR-Agent, an AI-powered framework that autonomously develops and refines traffic models through a closed-loop, iterative process. We structure the research pipeline into four key stages: idea generation, theory formulation, theory evaluation, and iterative optimization, and implement TR-Agent with four corresponding modules. These modules collaborate to retrieve knowledge from external sources, generate novel hypotheses, implement and debug models, and evaluate their performance on evaluation datasets. Through iteratively feedback and refinement, TR-Agent improves both modeling efficiency and effectiveness. We validate the framework on three representative traffic models: the Intelligent Driver Model (IDM) for car-following behavior, the MOBIL model for lane-changing, and the Lighthill-Whitham-Richards (LWR) speed-density relationship for macroscopic traffic flow modeling. Experimental results show substantial performance gains over the original models. To assess the robustness and generalizability of the improvements, we conduct additional evaluations across multiple real-world datasets, demonstrating consistent performance gains beyond the original development data. Furthermore, TR-Agent produces interpretable explanations for each improvement, enabling researchers to easily verify and extend its results. This makes TR-Agent a valuable assistant for traffic modeling refinement and a promising tool for broader applications in transportation research.
Related papers
- LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - ToolACE-R: Tool Learning with Adaptive Self-Refinement [84.69651852838794]
Tool learning allows Large Language Models to leverage external tools for solving complex user tasks.
We propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations.
Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes.
arXiv Detail & Related papers (2025-04-02T06:38:56Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
Generative retrieval reformulates retrieval as an autoregressive generation task, where large language models generate target documents directly from a query.<n>We systematically investigate training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence performance.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - DriveGen: Towards Infinite Diverse Traffic Scenarios with Large Models [22.21497010925769]
DriveGen is a novel traffic simulation framework with large models for more diverse traffic generation.
DriveGen fully utilizes large models' high-level cognition and reasoning of driving behavior.
Our generated scenarios and corner cases have a superior performance compared to state-of-the-art baselines.
arXiv Detail & Related papers (2025-03-04T06:14:21Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization [66.22117723598872]
We introduce an open-source framework designed to facilitate the development of multimodal web agent.
We first train the base model with imitation learning to gain the basic abilities.
We then let the agent explore the open web and collect feedback on its trajectories.
arXiv Detail & Related papers (2024-10-25T15:01:27Z) - Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving [17.27549891731047]
We improve the reliability of agent behaviors by closed-loop fine-tuning of behavior models with reinforcement learning.
Our method demonstrates improved overall performance, as well as improved targeted metrics such as collision rate.
We present a novel policy evaluation benchmark to directly assess the ability of simulated agents to measure the quality of autonomous vehicle planners.
arXiv Detail & Related papers (2024-09-26T23:40:33Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.
This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - In-context Learning for Automated Driving Scenarios [15.325910109153616]
One of the key challenges in current Reinforcement Learning (RL)-based Automated Driving (AD) agents is achieving flexible, precise, and human-like behavior cost-effectively.
This paper introduces an innovative approach utilizing Large Language Models (LLMs) to intuitively and effectively optimize RL reward functions in a human-centric way.
arXiv Detail & Related papers (2024-05-07T09:04:52Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Model-based versus Model-free Deep Reinforcement Learning for Autonomous
Racing Cars [46.64253693115981]
This paper investigates how model-based deep reinforcement learning agents generalize to real-world autonomous-vehicle control-tasks.
We show that model-based agents capable of learning in imagination, substantially outperform model-free agents with respect to performance, sample efficiency, successful task completion, and generalization.
arXiv Detail & Related papers (2021-03-08T17:15:23Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.