AI-Driven Risk-Aware Scheduling for Active Debris Removal Missions
- URL: http://arxiv.org/abs/2409.17012v1
- Date: Wed, 25 Sep 2024 15:16:07 GMT
- Title: AI-Driven Risk-Aware Scheduling for Active Debris Removal Missions
- Authors: Antoine Poupon, Hugo de Rohan Willner, Pierre Nikitits, Adam Abdin,
- Abstract summary: Debris in Low Earth Orbit represents a significant threat to space sustainability and spacecraft safety.
Armoured Transfer Vehicles (OTVs) facilitate debris deorbiting, thereby reducing future collision risks.
Armoured decision-planning model based on Deep Reinforcement Learning (DRL) is developed to train an OTV to plan optimal debris removal sequencing.
It is shown that using the proposed framework, the agent can find optimal mission plans and learn to update the planning autonomously to include risk handling of debris with high collision risk.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of debris in Low Earth Orbit (LEO) represents a significant threat to space sustainability and spacecraft safety. Active Debris Removal (ADR) has emerged as a promising approach to address this issue, utilising Orbital Transfer Vehicles (OTVs) to facilitate debris deorbiting, thereby reducing future collision risks. However, ADR missions are substantially complex, necessitating accurate planning to make the missions economically viable and technically effective. Moreover, these servicing missions require a high level of autonomous capability to plan under evolving orbital conditions and changing mission requirements. In this paper, an autonomous decision-planning model based on Deep Reinforcement Learning (DRL) is developed to train an OTV to plan optimal debris removal sequencing. It is shown that using the proposed framework, the agent can find optimal mission plans and learn to update the planning autonomously to include risk handling of debris with high collision risk.
Related papers
- On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
This study develops an AI-based implementation of autonomous On-Orbit Servicing (OOS) mission to assist with spacecraft collision avoidance maneuvers (CAMs)
We propose an autonomous servicer' trained with Reinforcement Learning (RL) to autonomously detect potential collisions between a target satellite and space debris, rendezvous and dock with endangered satellites, and execute optimal CAM.
arXiv Detail & Related papers (2024-09-25T17:40:37Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
This work proposes an implementation of autonomous CA decision-making capabilities on spacecraft based on Reinforcement Learning techniques.
The proposed framework considers imperfect monitoring information about the status of the debris in orbit and allows the AI system to effectively learn policies to perform accurate Collision Avoidance Maneuvers (CAMs)
The objective is to successfully delegate the decision-making process for autonomously implementing a CAM to the spacecraft without human intervention.
arXiv Detail & Related papers (2023-10-29T10:15:33Z) - HALO: Hazard-Aware Landing Optimization for Autonomous Systems [1.5414037351414311]
This paper presents a coupled perception-planning solution which addresses the hazard detection, optimal landing trajectory generation, and contingency planning challenges.
We develop and combine two novel algorithms, Hazard-Aware Landing Site Selection (HALSS) and Adaptive Deferred-Decision Trajectory Optimization (-DDTO), to address the perception and planning challenges.
We demonstrate the efficacy of our approach using a simulated Martian environment and show that our coupled perception-planning method achieves greater landing success.
arXiv Detail & Related papers (2023-04-04T07:20:06Z) - Reinforcement Learning-Based Air Traffic Deconfliction [7.782300855058585]
This work focuses on automating the horizontal separation of two aircraft and presents the obstacle avoidance problem as a 2D surrogate optimization task.
Using Reinforcement Learning (RL), we optimize the avoidance policy and model the dynamics, interactions, and decision-making.
The proposed system generates a quick and achievable avoidance trajectory that satisfies the safety requirements.
arXiv Detail & Related papers (2023-01-05T00:37:20Z) - GEO satellites on-orbit repairing mission planning with mission deadline
constraint using a large neighborhood search-genetic algorithm [2.106508530625051]
This paper proposes a large neighborhood search-adaptive genetic algorithm (LNS-AGA) for many-to-many on-orbit repairing mission planning.
In the many-to-many on-orbit repairing scenario, several servicing spacecrafts and target satellites are located in GEO orbits which have different inclination, RAAN and true anomaly.
The mission objective is to find the optimal servicing sequence and orbit rendezvous time of every servicing spacecraft to minimize total cost of all servicing spacecrafts with all target satellites repaired.
arXiv Detail & Related papers (2021-10-08T03:33:37Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.