論文の概要: MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
- arxiv url: http://arxiv.org/abs/2409.17110v1
- Date: Wed, 25 Sep 2024 17:25:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:44:18.300350
- Title: MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
- Title(参考訳): MorphoSeg: 複雑な細胞形態のバイオメディカルセグメンテーションのための不確実性を考慮した深層学習手法
- Authors: Tianhao Zhang, Heather J. McCourty, Berardo M. Sanchez-Tafolla, Anton Nikolaev, Lyudmila S. Mihaylova,
- Abstract要約: 深層学習は医学や生物学的イメージング、特にセグメンテーションのタスクに革命をもたらした。
細胞の形態の多様性と複雑さのため、生物学的な細胞を分断することは依然として困難である。
我々は多能性癌細胞株であるNtera-2細胞の新しいベンチマークデータセットを導入する。
トレーニング中の低線量領域からの仮想アウトリーチのサンプリングを取り入れた,複雑な細胞形態区分(MorphoSeg)のための不確実性を考慮したディープラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.50767638479269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks. However, segmenting biological cells remains challenging due to the high variability and complexity of cell shapes. Addressing this challenge requires high-quality datasets that accurately represent the diverse morphologies found in biological cells. Existing cell segmentation datasets are often limited by their focus on regular and uniform shapes. In this paper, we introduce a novel benchmark dataset of Ntera-2 (NT2) cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation, capturing the intricate and heterogeneous cellular structures that complicate segmentation tasks. To address these challenges, we propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training. Our comprehensive experimental evaluations against state-of-the-art baselines demonstrate that MorphoSeg significantly enhances segmentation accuracy, achieving up to a 7.74% increase in the Dice Similarity Coefficient (DSC) and a 28.36% reduction in the Hausdorff Distance. These findings highlight the effectiveness of our dataset and methodology in advancing cell segmentation capabilities, especially for complex and variable cell morphologies. The dataset and source code is publicly available at https://github.com/RanchoGoose/MorphoSeg.
- Abstract(参考訳): 深層学習は医学や生物学的イメージング、特にセグメンテーションのタスクに革命をもたらした。
しかし, 細胞形態の多様性や複雑さのため, 細胞分節化はいまだに困難である。
この課題に対処するには、生物学的な細胞に見られる多様な形態を正確に表現する高品質なデータセットが必要である。
既存のセルセグメンテーションデータセットは、通常形状と均一形状に焦点を絞ることによって制限されることが多い。
本稿では,多能性癌細胞株であるNtera-2 (NT2) の新たなベンチマークデータセットを提案する。
これらの課題に対処するために、トレーニング中に低線量領域から仮想外層をサンプリングすることにより、複雑な細胞形態分類(MorphoSeg)のための不確実性を考慮したディープラーニングフレームワークを提案する。
以上の結果から,MorphoSegはDice similarity Coefficient(DSC)の7.74%,Hausdorff Distanceの28.36%の削減を実現した。
これらの知見は,特に複雑細胞形態学および可変細胞形態学において,我々のデータセットと手法が細胞セグメンテーション能力の向上に有効であることを示す。
データセットとソースコードはhttps://github.com/RanchoGoose/MorphoSeg.comで公開されている。
関連論文リスト
- Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
多重イメージング(MI)は、複数の生物学的マーカーを、細胞内解像度で別々のイメージングチャネルで同時に可視化することを可能にする。
本稿では,グループ化畳み込みを利用して各画像チャンネルから解釈可能な埋め込み特徴を学習するセグメンテーションフリーなディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T11:21:33Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
生物学的文脈における暗黙の対応の重要性を明らかにする。
モデル構成成分間のインスタンス認識トレードオフを確保するために, 自己適応型動的蒸留を提案する。
論文 参考訳(メタデータ) (2024-07-14T04:41:16Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - CausalCellSegmenter: Causal Inference inspired Diversified Aggregation
Convolution for Pathology Image Segmentation [9.021612471640635]
深層学習モデルは、病理画像解析の分野で、細胞核セグメンテーションに有望な性能を示した。
本稿では,Causal Inference Module (CIM) とDiversified Aggregation Convolution (DAC) を組み合わせた新しいフレームワークCausalCellSegmenterを提案する。
論文 参考訳(メタデータ) (2024-03-10T03:04:13Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology [28.43244574309888]
空間統計学とトポロジカルデータ解析の数学的ツールをいくつか紹介する。
高品質なマルチクラスセルレイアウトを初めて生成する。
トポロジに富んだセルレイアウトは,データ拡張やセル分類などの下流タスクの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-05T07:01:34Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。