論文の概要: Detecting and Measuring Confounding Using Causal Mechanism Shifts
- arxiv url: http://arxiv.org/abs/2409.17840v1
- Date: Thu, 26 Sep 2024 13:44:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 18:44:57.008978
- Title: Detecting and Measuring Confounding Using Causal Mechanism Shifts
- Title(参考訳): 因果メカニズムシフトを用いたコンバウンディングの検出と測定
- Authors: Abbavaram Gowtham Reddy, Vineeth N Balasubramanian,
- Abstract要約: 因果性は非現実的で実証不可能である。
既存の手法は、基礎となる因果生成過程について強いパラメトリックな仮定を行い、共起変数の識別可能性を保証する。
本稿では,コンファウンディングの検出と測定のための包括的アプローチを提案する。
- 参考スコア(独自算出の注目度): 31.625339624279686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and measuring confounding effects from data is a key challenge in causal inference. Existing methods frequently assume causal sufficiency, disregarding the presence of unobserved confounding variables. Causal sufficiency is both unrealistic and empirically untestable. Additionally, existing methods make strong parametric assumptions about the underlying causal generative process to guarantee the identifiability of confounding variables. Relaxing the causal sufficiency and parametric assumptions and leveraging recent advancements in causal discovery and confounding analysis with non-i.i.d. data, we propose a comprehensive approach for detecting and measuring confounding. We consider various definitions of confounding and introduce tailored methodologies to achieve three objectives: (i) detecting and measuring confounding among a set of variables, (ii) separating observed and unobserved confounding effects, and (iii) understanding the relative strengths of confounding bias between different sets of variables. We present useful properties of a confounding measure and present measures that satisfy those properties. Empirical results support the theoretical analysis.
- Abstract(参考訳): 因果推論において,データからの共起効果の検出と測定が重要な課題である。
既存の手法はしばしば因果補充を仮定し、未観測の共起変数の存在を無視する。
因果性は非現実的で実証不可能である。
さらに、既存の手法は、共起変数の識別可能性を保証するために、基礎となる因果生成過程について強いパラメトリック仮定を行う。
因果関係の十分性やパラメトリックな仮定を緩和し、因果関係の発見と非i.d.データによる因果関係の分析の最近の進歩を活用して、因果関係の検出と測定のための包括的アプローチを提案する。
コンバウンディングの様々な定義を考察し、三つの目的を達成するための調整された方法論を導入する。
一 変数の集合の一致を検知し、測定すること。
二 観察された未観測の防犯効果を分離すること、及び
3)異なる変数の集合間の共起バイアスの相対的強度を理解すること。
共起尺度の有用性とそれらの特性を満たす尺度を提案する。
実験結果は理論分析を支持する。
関連論文リスト
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
因果発見(Causal Discovery)は、構成変数の統計的性質を分析することで、この問題に取り組む手法である。
教師付き学習によって得られたことに基づいて,現在の(おそらく誤解を招く)ベースライン結果に疑問を呈する。
その結果、堅牢な相互情報測定を用いて、教師なしの方法でこの問題にアプローチする。
論文 参考訳(メタデータ) (2024-08-01T09:11:08Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Identifiable causal inference with noisy treatment and no side information [6.432072145009342]
本研究では,不正確な連続処理変数を仮定するモデルを提案する。
我々は,提案モデルの因果効果の推定値が,側情報や測定誤差の分散に関する知識がなくても同定可能であることを証明した。
我々の研究は、信頼できる因果推論を行うアプリケーションの範囲を広げている。
論文 参考訳(メタデータ) (2023-06-18T18:38:10Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Uncertain Evidence in Probabilistic Models and Stochastic Simulators [80.40110074847527]
我々は、不確実性を伴う観測を伴う確率論的モデルにおいて、ベイズ的推論を行うという問題について考察する。
我々は、不確実な証拠をどう解釈するかを探求し、潜伏変数の推論に関連する適切な解釈の重要性を拡大する。
我々は、不確実な証拠を説明するための具体的なガイドラインを考案し、特に一貫性に関する新しい洞察を提供する。
論文 参考訳(メタデータ) (2022-10-21T20:32:59Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Causal Inference with Treatment Measurement Error: A Nonparametric
Instrumental Variable Approach [24.52459180982653]
原因が誤りである場合の因果効果に対するカーネルベースの非パラメトリック推定器を提案する。
提案手法であるMEKIVは,測定誤差の強度変化の下で,ベースラインを改良し,頑健であることを示す。
論文 参考訳(メタデータ) (2022-06-18T11:47:25Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
ロボットシステムの鍵となる課題は、他のエージェントの振る舞いを理解することである。
正しい推論の処理は、(衝突)因子が実験的に制御されない場合、特に困難である。
人に関する観察研究を行うために必要なツールをロボットに装備することを提案する。
論文 参考訳(メタデータ) (2022-01-27T22:15:56Z) - Latent Instrumental Variables as Priors in Causal Inference based on
Independence of Cause and Mechanism [2.28438857884398]
因果図形構造における潜時楽器変数や隠蔽共通原因などの潜時変数の役割について検討する。
2つの変数間の因果関係を推論する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-07-17T08:18:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。