Detecting and Measuring Confounding Using Causal Mechanism Shifts
- URL: http://arxiv.org/abs/2409.17840v1
- Date: Thu, 26 Sep 2024 13:44:22 GMT
- Title: Detecting and Measuring Confounding Using Causal Mechanism Shifts
- Authors: Abbavaram Gowtham Reddy, Vineeth N Balasubramanian,
- Abstract summary: Causal sufficiency is both unrealistic and empirically untestable.
Existing methods make strong parametric assumptions about the underlying causal generative process to guarantee the identifiability of confounding variables.
We propose a comprehensive approach for detecting and measuring confounding.
- Score: 31.625339624279686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and measuring confounding effects from data is a key challenge in causal inference. Existing methods frequently assume causal sufficiency, disregarding the presence of unobserved confounding variables. Causal sufficiency is both unrealistic and empirically untestable. Additionally, existing methods make strong parametric assumptions about the underlying causal generative process to guarantee the identifiability of confounding variables. Relaxing the causal sufficiency and parametric assumptions and leveraging recent advancements in causal discovery and confounding analysis with non-i.i.d. data, we propose a comprehensive approach for detecting and measuring confounding. We consider various definitions of confounding and introduce tailored methodologies to achieve three objectives: (i) detecting and measuring confounding among a set of variables, (ii) separating observed and unobserved confounding effects, and (iii) understanding the relative strengths of confounding bias between different sets of variables. We present useful properties of a confounding measure and present measures that satisfy those properties. Empirical results support the theoretical analysis.
Related papers
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Identifiable causal inference with noisy treatment and no side information [6.432072145009342]
This study proposes a model that assumes a continuous treatment variable that is inaccurately measured.
We prove that our model's causal effect estimates are identifiable, even without side information and knowledge of the measurement error variance.
Our work extends the range of applications in which reliable causal inference can be conducted.
arXiv Detail & Related papers (2023-06-18T18:38:10Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Uncertain Evidence in Probabilistic Models and Stochastic Simulators [80.40110074847527]
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as uncertain evidence'
We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables.
We devise concrete guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency.
arXiv Detail & Related papers (2022-10-21T20:32:59Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causal Inference with Treatment Measurement Error: A Nonparametric
Instrumental Variable Approach [24.52459180982653]
We propose a kernel-based nonparametric estimator for the causal effect when the cause is corrupted by error.
We empirically show that our proposed method, MEKIV, improves over baselines and is robust under changes in the strength of measurement error.
arXiv Detail & Related papers (2022-06-18T11:47:25Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Latent Instrumental Variables as Priors in Causal Inference based on
Independence of Cause and Mechanism [2.28438857884398]
We study the role of latent variables such as latent instrumental variables and hidden common causes in the causal graphical structures.
We derive a novel algorithm to infer causal relationships between two variables.
arXiv Detail & Related papers (2020-07-17T08:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.