論文の概要: Causality-based Subject and Task Fingerprints using fMRI Time-series Data
- arxiv url: http://arxiv.org/abs/2409.18298v1
- Date: Thu, 26 Sep 2024 21:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 07:10:35.823728
- Title: Causality-based Subject and Task Fingerprints using fMRI Time-series Data
- Title(参考訳): fMRI時系列データを用いた因果関係に基づく課題フィンガープリント
- Authors: Dachuan Song, Li Shen, Duy Duong-Tran, Xuan Wang,
- Abstract要約: 本稿では,「因果指紋」の概念を開拓し,定量化する。
実験結果と非因果性に基づく手法との比較により,提案手法の有効性が示された。
我々の研究は、健康管理と神経変性疾患の両方に適用可能な因果指紋のさらなる研究の道を開く。
- 参考スコア(独自算出の注目度): 8.268840872881213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a revived interest in system neuroscience causation models due to their unique capability to unravel complex relationships in multi-scale brain networks. In this paper, our goal is to verify the feasibility and effectiveness of using a causality-based approach for fMRI fingerprinting. Specifically, we propose an innovative method that utilizes the causal dynamics activities of the brain to identify the unique cognitive patterns of individuals (e.g., subject fingerprint) and fMRI tasks (e.g., task fingerprint). The key novelty of our approach stems from the development of a two-timescale linear state-space model to extract 'spatio-temporal' (aka causal) signatures from an individual's fMRI time series data. To the best of our knowledge, we pioneer and subsequently quantify, in this paper, the concept of 'causal fingerprint.' Our method is well-separated from other fingerprint studies as we quantify fingerprints from a cause-and-effect perspective, which are then incorporated with a modal decomposition and projection method to perform subject identification and a GNN-based (Graph Neural Network) model to perform task identification. Finally, we show that the experimental results and comparisons with non-causality-based methods demonstrate the effectiveness of the proposed methods. We visualize the obtained causal signatures and discuss their biological relevance in light of the existing understanding of brain functionalities. Collectively, our work paves the way for further studies on causal fingerprints with potential applications in both healthy controls and neurodegenerative diseases.
- Abstract(参考訳): 近年、マルチスケール脳ネットワークにおける複雑な関係を解き放つユニークな能力のために、システム神経科学因果関係モデルへの関心が復活している。
本稿では,fMRIフィンガープリントにおける因果性に基づくアプローチの有効性と有効性を検証することを目的とする。
具体的には、脳の因果ダイナミクスを利用して、個人(例えば、被写体指紋)とfMRIタスク(例えば、タスク指紋)のユニークな認知パターンを識別する革新的な手法を提案する。
提案手法の重要な特徴は,fMRI時系列データから「時空間」(いわゆる因果)署名を抽出する2時間線形状態空間モデルの開発に端を発する。
我々の知る限り、我々は「因果指紋」という概念を開拓し、その後定量化する。
本手法は, 原因・効果の観点から指紋を定量化し, 対象識別を行うためのモーダル分解・投影法と, タスク識別を行うためのGNNベース(Graph Neural Network)モデルとを組み込むことにより, 他の指紋研究とよく分離されている。
最後に,実験結果と非因果性に基づく手法との比較により,提案手法の有効性が示された。
得られた因果的シグネチャを可視化し,脳機能に関する既存の理解を踏まえ,それらの生物学的関連性について考察する。
我々の研究は、健康管理と神経変性疾患の両方に応用可能な因果指紋のさらなる研究の道を開くものである。
関連論文リスト
- Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning [28.681229869236393]
縦断的神経画像研究は、脳機能と認知の間の動的相互作用を研究することによって、脳の老化と疾患の理解を改善することを目的としている。
本稿では,グラフ注意ネットワークと一般化相関解析を用いた教師なし学習モデルを提案する。
個々の人の独特の神経・認知表現型を反映した脳認知指紋を作成するために、モデルは個別化およびマルチモーダル・コントラスト学習にも依存する。
論文 参考訳(メタデータ) (2024-09-20T20:36:20Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection [9.11430195887347]
本稿では,EMCI検出のための新しいグラフ構造自己学習機構を備えた空間時空間グラフ畳み込みネットワークを提案する。
The Alzheimer's Disease Neuroimaging Initiative databaseの結果は、我々の手法が最先端のアプローチより優れていることを示している。
論文 参考訳(メタデータ) (2022-11-11T12:29:00Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - From Connectomic to Task-evoked Fingerprints: Individualized Prediction
of Task Contrasts from Resting-state Functional Connectivity [17.020869686284165]
Resting-state functional MRI (rsfMRI) は、個人の認知指紋として機能する機能的コネクトームを産生する。
静止状態の指紋から個々のタスクのコントラストを予測するために,面ベース畳み込みニューラルネットワーク(BrainSurfCNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-08-07T02:44:16Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
本稿では,タスクfMRIと安静状態fMRIで計測されたアクティベーションと接続性に基づく情報を組み合わせて,新しい機械学習手法を提案する。
マルチビューディープ・オートエンコーダは、2つのfMRIモダリティを、患者を特徴づけるスカラースコアを推測するために予測モデルが訓練されたジョイント表現空間に融合させるように設計されている。
論文 参考訳(メタデータ) (2020-04-01T09:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。