Harnessing Wavelet Transformations for Generalizable Deepfake Forgery Detection
- URL: http://arxiv.org/abs/2409.18301v1
- Date: Thu, 26 Sep 2024 21:16:51 GMT
- Title: Harnessing Wavelet Transformations for Generalizable Deepfake Forgery Detection
- Authors: Lalith Bharadwaj Baru, Shilhora Akshay Patel, Rohit Boddeda,
- Abstract summary: Wavelet-CLIP is a deepfake detection framework that integrates wavelet transforms with features derived from the ViT-L/14 architecture, pre-trained in the CLIP fashion.
Our method showcases outstanding performance, achieving an average AUC of 0.749 for cross-data generalization and 0.893 for robustness against unseen deepfakes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of digital image manipulation, particularly with the advancement of deep generative models, significantly challenges existing deepfake detection methods, especially when the origin of the deepfake is obscure. To tackle the increasing complexity of these forgeries, we propose \textbf{Wavelet-CLIP}, a deepfake detection framework that integrates wavelet transforms with features derived from the ViT-L/14 architecture, pre-trained in the CLIP fashion. Wavelet-CLIP utilizes Wavelet Transforms to deeply analyze both spatial and frequency features from images, thus enhancing the model's capability to detect sophisticated deepfakes. To verify the effectiveness of our approach, we conducted extensive evaluations against existing state-of-the-art methods for cross-dataset generalization and detection of unseen images generated by standard diffusion models. Our method showcases outstanding performance, achieving an average AUC of 0.749 for cross-data generalization and 0.893 for robustness against unseen deepfakes, outperforming all compared methods. The code can be reproduced from the repo: \url{https://github.com/lalithbharadwajbaru/Wavelet-CLIP}
Related papers
- Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
We propose a novel approach that repurposes a well-trained Vision-Language Models (VLMs) for general deepfake detection.
Motivated by the model reprogramming paradigm that manipulates the model prediction via data perturbations, our method can reprogram a pretrained VLM model.
Our superior performances are at less cost of trainable parameters, making it a promising approach for real-world applications.
arXiv Detail & Related papers (2024-09-04T12:46:30Z) - Towards More General Video-based Deepfake Detection through Facial Feature Guided Adaptation for Foundation Model [15.61920157541529]
We propose a novel Deepfake detection approach by adapting the Foundation Models with rich information encoded inside.
Inspired by the recent advances of parameter efficient fine-tuning, we propose a novel side-network-based decoder.
Our approach exhibits superior effectiveness in identifying unseen Deepfake samples, achieving notable performance improvement.
arXiv Detail & Related papers (2024-04-08T14:58:52Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
We present a blended-based detection approach that has robust applicability to unseen datasets.
Experiments demonstrated that this approach results in better performance in both cross-manipulation detection and cross-dataset detection on unseen data.
arXiv Detail & Related papers (2023-12-13T09:49:15Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.