論文の概要: AM-MTEEG: Multi-task EEG classification based on impulsive associative memory
- arxiv url: http://arxiv.org/abs/2409.18375v1
- Date: Fri, 27 Sep 2024 01:33:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:41:07.774032
- Title: AM-MTEEG: Multi-task EEG classification based on impulsive associative memory
- Title(参考訳): AM-MTEEG:インパルス的連想記憶に基づくマルチタスク脳波分類
- Authors: Junyan Li, Bin Hu, Zhi-Hong Guan,
- Abstract要約: 本研究では,ヒト海馬における学習と記憶の原理に着想を得たマルチタスク分類モデルAM-MTEEGを提案する。
このモデルは個々の脳波を独立したタスクとして扱い、個人間での機能共有を促進する。
2つのBCIコンペティションデータセットによる実験結果から,我々のモデルでは最先端モデルと比較して平均精度が向上していることがわかった。
- 参考スコア(独自算出の注目度): 6.240145569484483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalogram-based brain-computer interface (BCI) has potential applications in various fields, but their development is hindered by limited data and significant cross-individual variability. Inspired by the principles of learning and memory in the human hippocampus, we propose a multi-task (MT) classification model, called AM-MTEEG, which combines learning-based impulsive neural representations with bidirectional associative memory (AM) for cross-individual BCI classification tasks. The model treats the EEG classification of each individual as an independent task and facilitates feature sharing across individuals. Our model consists of an impulsive neural population coupled with a convolutional encoder-decoder to extract shared features and a bidirectional associative memory matrix to map features to class. Experimental results in two BCI competition datasets show that our model improves average accuracy compared to state-of-the-art models and reduces performance variance across individuals, and the waveforms reconstructed by the bidirectional associative memory provide interpretability for the model's classification results. The neuronal firing patterns in our model are highly coordinated, similarly to the neural coding of hippocampal neurons, indicating that our model has biological similarities.
- Abstract(参考訳): 脳波に基づく脳-コンピュータインタフェース(BCI)は様々な分野に応用できるが、その発達は限られたデータと大きな個人間変動によって妨げられている。
ヒト海馬における学習と記憶の原理に着想を得て,学習に基づくインパルスニューラル表現と双方向連想メモリ(AM)を組み合わせたマルチタスク(MT)分類モデル(AM-MTEEG)を提案する。
このモデルは個々の脳波を独立したタスクとして扱い、個人間での機能共有を促進する。
本モデルは,畳み込みエンコーダデコーダと結合して,共有特徴を抽出するインパルス型ニューラル集団と,特徴をクラスにマップする双方向連想記憶行列とから構成される。
2つのBCIコンペティションデータセットによる実験結果から、我々のモデルは最先端モデルと比較して平均精度を向上し、個人間の性能ばらつきを低減し、双方向連想メモリによって再構成された波形は、モデルの分類結果に対して解釈可能であることが示された。
我々のモデルにおけるニューロンの発火パターンは、海馬ニューロンの神経コーディングと同様、高度に調整されており、我々のモデルが生物学的に類似していることが示される。
関連論文リスト
- A Differentiable Approach to Multi-scale Brain Modeling [3.5874544981360987]
本稿では,脳シミュレータBrainPyを用いたマルチスケール微分脳モデリングワークフローを提案する。
単一ニューロンレベルでは、微分可能なニューロンモデルを実装し、電気生理学的データへの適合を最適化するために勾配法を用いる。
ネットワークレベルでは、生物学的に制約されたネットワークモデルを構築するためにコネクトロミックデータを組み込む。
論文 参考訳(メタデータ) (2024-06-28T07:41:31Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Benchmarking Hebbian learning rules for associative memory [0.0]
連想記憶は認知と計算の脳科学における重要な概念である。
ストレージ容量とプロトタイプ抽出に関する6つの異なる学習ルールをベンチマークする。
論文 参考訳(メタデータ) (2023-12-30T21:49:47Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
論文 参考訳(メタデータ) (2021-11-01T21:50:35Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Identification of brain states, transitions, and communities using
functional MRI [0.5872014229110214]
ベイズモデルに基づく潜在脳状態のキャラクタリゼーションを提案し,後方予測の不一致に基づく新しい手法を提案する。
タスク-fMRIデータの解析により得られた結果は、外部タスク要求と脳状態間の変化点の間の適切な遅延を示す。
論文 参考訳(メタデータ) (2021-01-26T08:10:00Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
マルチモーダル機能磁気共鳴イメージング(fMRI)を使用して、脳の接続ネットワークに基づいて個々の行動特性および認知特性を予測することができます。
本稿では,fMRI時系列と各脳領域間の機能接続(FC)を組み込んだ,解釈可能な多モードグラフ畳み込みネットワーク(MGCN)モデルを提案する。
我々は、フィラデルフィア神経開発コホート上のMGCNモデルを検証し、個々の広範囲達成テスト(WRAT)スコアを予測します。
論文 参考訳(メタデータ) (2021-01-20T20:53:07Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。