論文の概要: A Differentiable Approach to Multi-scale Brain Modeling
- arxiv url: http://arxiv.org/abs/2406.19708v3
- Date: Wed, 25 Sep 2024 11:56:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 00:59:29.479585
- Title: A Differentiable Approach to Multi-scale Brain Modeling
- Title(参考訳): マルチスケール脳モデルへの微分可能なアプローチ
- Authors: Chaoming Wang, Muyang Lyu, Tianqiu Zhang, Sichao He, Si Wu,
- Abstract要約: 本稿では,脳シミュレータBrainPyを用いたマルチスケール微分脳モデリングワークフローを提案する。
単一ニューロンレベルでは、微分可能なニューロンモデルを実装し、電気生理学的データへの適合を最適化するために勾配法を用いる。
ネットワークレベルでは、生物学的に制約されたネットワークモデルを構築するためにコネクトロミックデータを組み込む。
- 参考スコア(独自算出の注目度): 3.5874544981360987
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a multi-scale differentiable brain modeling workflow utilizing BrainPy, a unique differentiable brain simulator that combines accurate brain simulation with powerful gradient-based optimization. We leverage this capability of BrainPy across different brain scales. At the single-neuron level, we implement differentiable neuron models and employ gradient methods to optimize their fit to electrophysiological data. On the network level, we incorporate connectomic data to construct biologically constrained network models. Finally, to replicate animal behavior, we train these models on cognitive tasks using gradient-based learning rules. Experiments demonstrate that our approach achieves superior performance and speed in fitting generalized leaky integrate-and-fire and Hodgkin-Huxley single neuron models. Additionally, training a biologically-informed network of excitatory and inhibitory spiking neurons on working memory tasks successfully replicates observed neural activity and synaptic weight distributions. Overall, our differentiable multi-scale simulation approach offers a promising tool to bridge neuroscience data across electrophysiological, anatomical, and behavioral scales.
- Abstract(参考訳): 本稿では,脳のシミュレーションを精度の高い勾配に基づく最適化と組み合わせた独自の脳シミュレータBrainPyを用いた,マルチスケールの微分脳モデリングワークフローを提案する。
我々は、異なる脳スケールでBrainPyのこの能力を活用します。
単一ニューロンレベルでは、微分可能なニューロンモデルを実装し、電気生理学的データへの適合を最適化するために勾配法を用いる。
ネットワークレベルでは、生物学的に制約されたネットワークモデルを構築するためにコネクトロミックデータを組み込む。
最後に、動物行動の再現を目的として、勾配に基づく学習規則を用いて、これらのモデルを認知タスクで訓練する。
実験により, 一般化されたインテリジェンス・アンド・ファイアとホジキン・ハクスリー単一ニューロンモデルに適合させることで, より優れた性能と速度が得られることを示した。
さらに、生物学的にインフォームドされた興奮性および抑制性スパイキングニューロンのネットワークをトレーニングし、観察された神経活動とシナプスの重量分布を正常に再現する。
全体として、我々の異なるマルチスケールのシミュレーションアプローチは、電気生理学的、解剖学的、行動的スケールにまたがる神経科学データを橋渡しする有望なツールを提供する。
関連論文リスト
- Towards a "universal translator" for neural dynamics at single-cell, single-spike resolution [10.49121904052395]
我々は、複数の脳領域にまたがる多様なタスクを解決できる、神経スパイクデータのための最初の基礎モデルを構築する。
予測タスクには、単一ニューロンとリージョンレベルのアクティビティ予測、前方予測、行動復号化などがある。
論文 参考訳(メタデータ) (2024-07-19T21:05:28Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z) - Ranking of Communities in Multiplex Spatiotemporal Models of Brain
Dynamics [0.0]
隠れマルコフグラフモデル(HMs)と呼ぶ多重脳状態グラフモデルとして、ニューラルHMMの解釈を提案する。
この解釈により、ネットワーク分析技術の完全なレパートリーを使用して、動的脳活動を分析することができる。
ランダムウォークに基づく手法を用いて,脳領域の重要なコミュニティを決定するための新しいツールを開発した。
論文 参考訳(メタデータ) (2022-03-17T12:14:09Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Brain-inspired global-local learning incorporated with neuromorphic
computing [35.70151531581922]
我々は,脳に触発されたメタラーニングパラダイムと,神経力学とシナプス可塑性を取り入れた識別可能なスパイキングモデルを導入することで,ニューロモルフィックハイブリッド学習モデルを報告した。
ニューロモルフィック・ビジョン・センサにおける数ショット学習、連続学習、フォールトトレランス学習を含む複数のタスクにおいて、このモデルの利点を実証する。
論文 参考訳(メタデータ) (2020-06-05T04:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。