論文の概要: Physics Augmented Tuple Transformer for Autism Severity Level Detection
- arxiv url: http://arxiv.org/abs/2409.18438v1
- Date: Fri, 27 Sep 2024 04:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:21:38.152328
- Title: Physics Augmented Tuple Transformer for Autism Severity Level Detection
- Title(参考訳): 自閉症重症度検出のための物理増幅タプル変圧器
- Authors: Chinthaka Ranasingha, Harshala Gammulle, Tharindu Fernando, Sridha Sridharan, Clinton Fookes,
- Abstract要約: 自閉症スペクトラム障害(ASD)の早期診断は、ASDを持つ子供の健康と幸福を向上する有効なステップである。
本稿では, ASD重大度認識のための物理法則を利用した新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 34.00383247423484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis of Autism Spectrum Disorder (ASD) is an effective and favorable step towards enhancing the health and well-being of children with ASD. Manual ASD diagnosis testing is labor-intensive, complex, and prone to human error due to several factors contaminating the results. This paper proposes a novel framework that exploits the laws of physics for ASD severity recognition. The proposed physics-informed neural network architecture encodes the behaviour of the subject extracted by observing a part of the skeleton-based motion trajectory in a higher dimensional latent space. Two decoders, namely physics-based and non-physics-based decoder, use this latent embedding and predict the future motion patterns. The physics branch leverages the laws of physics that apply to a skeleton sequence in the prediction process while the non-physics-based branch is optimised to minimise the difference between the predicted and actual motion of the subject. A classifier also leverages the same latent space embeddings to recognise the ASD severity. This dual generative objective explicitly forces the network to compare the actual behaviour of the subject with the general normal behaviour of children that are governed by the laws of physics, aiding the ASD recognition task. The proposed method attains state-of-the-art performance on multiple ASD diagnosis benchmarks. To illustrate the utility of the proposed framework beyond the task ASD diagnosis, we conduct a third experiment using a publicly available benchmark for the task of fall prediction and demonstrate the superiority of our model.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)の早期診断は、ASDを持つ子供の健康と幸福を高めるための有効なステップである。
手動ASD診断テストは、労働集約的で複雑で、その結果を汚染する要因がいくつかあるため、ヒューマンエラーを起こしやすい。
本稿では, ASD重大度認識のための物理法則を利用した新しい枠組みを提案する。
提案した物理インフォームドニューラルネットワークアーキテクチャは、高次元の潜伏空間において骨格に基づく運動軌跡の一部を観察して抽出された被験者の挙動を符号化する。
2つのデコーダ、すなわち物理ベースと非物理学ベースのデコーダは、この潜伏埋め込みを使用し、将来の動きパターンを予測する。
物理分枝は、予測過程における骨格列に適用する物理の法則を利用し、非物理学に基づく分枝は、被検体の予測運動と実際の運動の差を最小化するために最適化される。
分類器は、同じ潜在空間埋め込みを利用して、ASDの重大さを認識する。
この二重生成目的は、ASD認識タスクを支援するために、対象の実際の行動と物理法則によって支配される子供の一般的な正常な行動とをネットワークに明示的に比較するよう強制する。
提案手法は,複数の ASD 診断ベンチマークにおける最先端性能を実現する。
タスクASD診断以外のフレームワークの有用性を説明するため,我々は,転倒予測タスクのために公開されているベンチマークを用いて第3の実験を行い,本モデルの優位性を実証した。
関連論文リスト
- Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく向上させることが示されている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
論文 参考訳(メタデータ) (2024-09-19T23:08:09Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Early Autism Diagnosis based on Path Signature and Siamese Unsupervised Feature Compressor [15.39635888144281]
我々は, 早期自閉症診断のための, 未分化, クラス不均衡, 異種構造MR画像から重要な特徴を抽出する, 深層学習に基づく新しい手法を考案した。
具体的には、不足データを拡張するためのシームズ検証フレームワークと、データ不均衡を軽減するための教師なし圧縮機を提案する。
論文 参考訳(メタデータ) (2023-07-12T22:08:22Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning? [0.0]
ASDの中核的な側面の神経機構を明示的にマッピングする教師なしグラフ表現を導入する。
機能近赤外分光データによる最初の結果は、タスクに依存しない、解釈可能なグラフ表現の潜在的な予測能力を示している。
論文 参考訳(メタデータ) (2022-08-17T07:10:57Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
本稿では,1分間の刺激映像から抽出した画像を用いた視線予測のための畳み込みニューラルネットワーク(CNN)アルゴリズムを提案する。
本モデルでは,被検者の視線方向の予測に高い精度とロバスト性を実現した。
論文 参考訳(メタデータ) (2020-07-28T18:47:21Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。