Effects of phase-gradient on the nonadiabatic dynamics and photon-phonon conversion in one-dimensional array of optomechanical cavities
- URL: http://arxiv.org/abs/2409.18447v2
- Date: Wed, 29 Jan 2025 10:35:38 GMT
- Title: Effects of phase-gradient on the nonadiabatic dynamics and photon-phonon conversion in one-dimensional array of optomechanical cavities
- Authors: Divya Mishra, Parvendra Kumar,
- Abstract summary: Phase of a driving laser introduces the phase-dependent coupling between photonic and phononic modes.
Phase affects the nonadiabatic dynamics of the eigenmodes and photon-phonon conversion in an array of coupled optomechanical cavities.
- Score: 1.1510009152620668
- License:
- Abstract: Manipulation of photonic and phononic coupling in the coupled resonators plays a crucial role in nonreciprocal devices and quantum transduction. In this work, we theoretically investigated how the phase of a driving laser introduces the phase-dependent coupling between photonic and phononic modes and affects the nonadiabatic dynamics of the eigenmodes and photon-phonon conversion in an array of coupled optomechanical cavities. We analyze the band structure of eigenmodes and show that the quick transfer of population between the eigenmodes takes place at the minimum energy gap, which can also be controlled via phase of the driving laser. We further show that the eigenmodes constitute the superposition of photonic and phononic modes, resulting from the optomechanical coupling between these modes. Moreover, the phase also enables the switching of the relative weights of photons and phonons in the eigenmodes. Finally, we investigate the effects of phase on the coherent conversion of photon-phonon in a finite-size array.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Photon-assisted Landau Zener transitions in a tunable driven Rabi dimer
coupled to a micromechanical resonator [9.117356812163793]
We have investigated photon-assisted Landau-Zener transitions and qubit manipulation in a quantum electrodynamics device.
Results show that low phonon frequencies can alter the qubit dynamics, particularly in the absence of the driving fields.
This study unveils the imperative roles that photons and phonons play in the Rabi dimer model.
arXiv Detail & Related papers (2023-07-20T19:24:39Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Enhancing the stimulated emission of polarization-entangled photons
using passive optical components [0.0]
We propose a scheme to scale up the stimulated emission of polarization-entangled photon pairs using a resonator with only passive optical components.
We show the theoretical aspects of the scheme and also perform a proof-of-principle experimental demonstration of the scheme in a double-pass configuration.
arXiv Detail & Related papers (2022-11-28T00:39:34Z) - Emergent Quasiperiodicity from Polariton-phonon Hybrid Excitations in
Waveguide Quantum Optomechanics [2.798030314600194]
We investigate polariton-phonon hybrid excitations, which describe the collective excitations of emitter-photon polaritons and vibrational phonons.
We demonstrate the emergence of an interaction-induced quasiperiodic structure caused by the interplay between phonon scatterings and waveguide-mediated long-range couplings.
arXiv Detail & Related papers (2022-07-18T12:15:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Optical normal-mode-induced phonon-sideband splitting in photon-blockade
effect [0.34410212782758043]
We study the photon-blockade effect in a loop-coupled optomechanical system.
We find a phenomenon of optical normal-mode-induced phonon-sideband splitting in the photon-blockade effect.
arXiv Detail & Related papers (2020-09-29T11:27:17Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.