論文の概要: Dealing with Controversy: An Emotion and Coping Strategy Corpus Based on Role Playing
- arxiv url: http://arxiv.org/abs/2409.19025v1
- Date: Thu, 26 Sep 2024 06:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:50:50.844043
- Title: Dealing with Controversy: An Emotion and Coping Strategy Corpus Based on Role Playing
- Title(参考訳): 論争への対処:ロールプレイングに基づく感情・コーピング戦略コーパス
- Authors: Enrica Troiano, Sofie Labat, Marco Antonio Stranisci, Viviana Patti, Rossana Damiano, Roman Klinger,
- Abstract要約: 多くの感情の基本は、自然言語処理において未発見のままである。
私たちは感情を健全な状況に対処するための戦略として扱う。
本稿では,ロールプレイングによって構築されたコーパスとともに,識別に対処するタスクを紹介する。
- 参考スコア(独自算出の注目度): 14.255172744243541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a mismatch between psychological and computational studies on emotions. Psychological research aims at explaining and documenting internal mechanisms of these phenomena, while computational work often simplifies them into labels. Many emotion fundamentals remain under-explored in natural language processing, particularly how emotions develop and how people cope with them. To help reduce this gap, we follow theories on coping, and treat emotions as strategies to cope with salient situations (i.e., how people deal with emotion-eliciting events). This approach allows us to investigate the link between emotions and behavior, which also emerges in language. We introduce the task of coping identification, together with a corpus to do so, constructed via role-playing. We find that coping strategies realize in text even though they are challenging to recognize, both for humans and automatic systems trained and prompted on the same task. We thus open up a promising research direction to enhance the capability of models to better capture emotion mechanisms from text.
- Abstract(参考訳): 感情に関する心理学的な研究と計算的な研究の間にはミスマッチがある。
心理学的研究は、これらの現象の内部メカニズムの説明と文書化を目的としており、計算作業はしばしばそれらをラベルに単純化する。
多くの感情基礎は、自然言語処理、特に感情がどのように発達し、人々がそれらにどう対処するかにおいて、未解明のままである。
このギャップを減らすために、私たちは対処の理論に従い、感情を健全な状況に対処するための戦略として扱う(つまり、人々が感情を過小評価する出来事にどう対処するか)。
このアプローチは、言語にも現れる感情と行動の関連を調査することを可能にする。
我々は,ロールプレイングによって構築されたコーパスとともに,識別に対処するタスクを導入する。
我々は、人間と自動システムの両方が、同じタスクで訓練され、促されるように、認識するのが困難であるにもかかわらず、対処戦略がテキストで実現されていることを発見した。
そこで我々は,テキストから感情のメカニズムを捉える能力を高めるために,有望な研究の方向性を定めている。
関連論文リスト
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - CauESC: A Causal Aware Model for Emotional Support Conversation [79.4451588204647]
既存のアプローチは、苦痛の感情の原因を無視します。
彼らは、話者間の相互作用における感情的ダイナミクスよりも、探究者自身の精神状態に焦点を当てている。
本稿では、まず、苦痛の感情要因と、その原因によって引き起こされる感情効果を認識する新しいフレームワークCauESCを提案する。
論文 参考訳(メタデータ) (2024-01-31T11:30:24Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
テキストにおける感情分析という用語は、様々な自然言語処理タスクを仮定する。
感情と出来事は2つの方法で関連していると我々は主張する。
我々は,NLPモデルに心理的評価理論を組み込んで事象を解釈する方法について議論する。
論文 参考訳(メタデータ) (2023-09-05T09:56:29Z) - Automatic Emotion Experiencer Recognition [12.447379545167642]
テキストにおける経験者検出は難題であり、精度は.82、リコールは.56(F1 =.66)であることを示す。
テキストにおける経験者検出は難題であり、精度は.82、リコールは.56(F1 =.66)であることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:33:28Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
共感的対話は、感情的要因(例えば、感情の状態)と認知的要因(例えば、感情の原因)の両方の知覚を必要とする人間のような行動である。
共感対話における2つのターン間の感情原因の自然な遷移を明示的にモデル化する感情原因遷移グラフを提案する。
このグラフでは、次のターンで生じる感情の概念語を、特殊に設計された概念認識デコーダによって予測し、使用し、共感的な応答を生成する。
論文 参考訳(メタデータ) (2023-02-23T05:51:17Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
CovidET (Emotions and their Triggers during Covid-19)は、COVID-19に関連する英国のReddit投稿1,900件のデータセットである。
我々は、感情を共同で検出し、感情のトリガーを要約する強力なベースラインを開発する。
分析の結果,コビデットは感情特異的要約における新たな課題と,長文のソーシャルメディア投稿におけるマルチ感情検出の課題が示唆された。
論文 参考訳(メタデータ) (2022-10-22T19:10:26Z) - Natural Language Processing for Cognitive Analysis of Emotions [0.0]
本稿では,感情とその原因を探索する新たなアノテーション手法と,感情場面の自伝的記述からなる新たなフランス語データセットを提案する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをすることで収集された。
論文 参考訳(メタデータ) (2022-10-11T09:47:00Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
i) 相手の感情が発話から引き起こされる原因となる単語を特定することと, (ii) 応答生成における特定の単語を反映することである。
社会的認知からインスピレーションを得て、生成的推定を用いて、感情が単語レベルのラベルのない発話から単語を推論する。
論文 参考訳(メタデータ) (2021-09-18T04:22:49Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
我々はScherer (2005) による感情成分プロセスモデル (CPM) を用いて感情コミュニケーションを説明する。
CPMは、感情は、出来事、すなわち主観的感情、認知的評価、表現、生理的身体反応、動機的行動傾向に対する様々なサブコンポーネントの協調過程であると述べている。
Twitter上での感情は、主に出来事の説明や主観的な感情の報告によって表現されているのに対し、文献では、著者はキャラクターが何をしているかを記述し、解釈を読者に任せることを好む。
論文 参考訳(メタデータ) (2021-07-27T15:53:25Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。