論文の概要: Enhancing Productivity with AI During the Development of an ISMS: Case Kempower
- arxiv url: http://arxiv.org/abs/2409.19029v1
- Date: Thu, 26 Sep 2024 20:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:50:50.835816
- Title: Enhancing Productivity with AI During the Development of an ISMS: Case Kempower
- Title(参考訳): ISMS開発におけるAIによる生産性向上 - ケースケムパワー
- Authors: Atro Niemeläinen, Muhammad Waseem, Tommi Mikkonen,
- Abstract要約: 本稿では、フィンランドの企業であるKempowerが、ISMSの作成と実装に生成AIを効果的に利用した方法について論じる。
本研究は、生成AIの使用が、IMSの作成プロセスを強化する方法について研究する。
- 参考スコア(独自算出の注目度): 3.94000837747249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investing in an Information Security Management System (ISMS) enhances organizational competitiveness and protects information assets. However, introducing an ISMS consumes significant resources; for instance, implementing an ISMS according to the ISO27001 standard involves documenting 116 different controls. This paper discusses how Kempower, a Finnish company, has effectively used generative AI to create and implement an ISMS, significantly reducing the resources required. This research studies how the use of generative AI can enhance the process of creating an ISMS. We conducted seven semi-structured interviews held with various stakeholders of the ISMS project, who had varying levels experience in cyber security and AI.
- Abstract(参考訳): ISMS(Information Security Management System)への投資は、組織の競争力を高め、情報資産を保護する。
しかし、ISMSの導入は重要なリソースを消費する。例えば、ISO27001標準に従ってISMSを実装するには、116の異なるコントロールを文書化する必要がある。
本稿では、フィンランドの企業であるKempowerが、ISMSの作成と実装に生成AIを効果的に利用し、必要なリソースを大幅に削減した方法について論じる。
本研究は、生成AIの使用が、IMSの作成プロセスを強化する方法について研究する。
我々は、サイバーセキュリティとAIの様々なレベルの経験を持つICSプロジェクトの様々なステークホルダーと、半構造化された7つのインタビューを行った。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - The AI Agent Index [8.48525754659057]
エージェントAIシステムは、人間の関与が限定された複雑なタスクを計画し実行することができる。
現在、エージェントシステムの技術コンポーネント、目的の用途、安全性の特徴を文書化するための構造化されたフレームワークは存在しない。
AI Agent Indexは、現在デプロイされているエージェントAIシステムに関する情報をドキュメント化する最初の公開データベースである。
論文 参考訳(メタデータ) (2025-02-03T18:59:13Z) - Interplay of ISMS and AIMS in context of the EU AI Act [0.0]
EU AI Act(AIA)は、リスク管理システム(RMS)と品質管理システム(QMS)のハイリスクAIシステムの実装を規定している。
本稿では,情報セキュリティ管理システム(ISMS)とAIMS(AIMS)のインターフェースについて検討する。
BSI GrundschutzフレームワークにAIシステムのセキュリティを包括的に保証するために、4つの新しいAIモジュールが提案されている。
論文 参考訳(メタデータ) (2024-12-24T20:13:19Z) - Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends [64.57762280003618]
近い将来、LM駆動の汎用AIエージェントが、生産タスクにおいて不可欠なツールとして機能することが予想される。
本稿では,将来のLMエージェントの自律的協調に関わるシナリオについて検討する。
論文 参考訳(メタデータ) (2024-09-22T14:09:49Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Design of a Quality Management System based on the EU Artificial Intelligence Act [0.0]
EU AI Actは、リスクの高いAIシステムのプロバイダとデプロイ者が品質管理システム(QMS)を確立することを義務付けている。
本稿では,マイクロサービス・ソフトウェア・アズ・ア・サービス・ウェブ・アプリケーションとしてのQMSの設計コンセプトとプロトタイプを紹介する。
論文 参考訳(メタデータ) (2024-08-08T12:14:02Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
本稿では,リスクの高いAIシステムに対するEU AI Act要件を解釈するための方法論を提案する。
まず,AIシステムに対する製品品質モデルの拡張を提案し,現行の品質モデルではカバーされない法に関する属性を取り入れた。
次に、ステークホルダーレベルで技術的要件を導出するための契約ベースのアプローチを提案します。
論文 参考訳(メタデータ) (2024-03-25T14:32:18Z) - APPRAISE: a governance framework for innovation with AI systems [0.0]
EU人工知能法(英語: EU Artificial Intelligence Act、AIA)は、AIシステムの有害な影響を封じ込めようとする最初の重大な立法の試みである。
本稿では,AIイノベーションのためのガバナンスフレームワークを提案する。
このフレームワークは戦略変数と責任ある価値創造のギャップを埋める。
論文 参考訳(メタデータ) (2023-09-26T12:20:07Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。