論文の概要: Enhancing Productivity with AI During the Development of an ISMS: Case Kempower
- arxiv url: http://arxiv.org/abs/2409.19029v1
- Date: Thu, 26 Sep 2024 20:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:50:50.835816
- Title: Enhancing Productivity with AI During the Development of an ISMS: Case Kempower
- Title(参考訳): ISMS開発におけるAIによる生産性向上 - ケースケムパワー
- Authors: Atro Niemeläinen, Muhammad Waseem, Tommi Mikkonen,
- Abstract要約: 本稿では、フィンランドの企業であるKempowerが、ISMSの作成と実装に生成AIを効果的に利用した方法について論じる。
本研究は、生成AIの使用が、IMSの作成プロセスを強化する方法について研究する。
- 参考スコア(独自算出の注目度): 3.94000837747249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investing in an Information Security Management System (ISMS) enhances organizational competitiveness and protects information assets. However, introducing an ISMS consumes significant resources; for instance, implementing an ISMS according to the ISO27001 standard involves documenting 116 different controls. This paper discusses how Kempower, a Finnish company, has effectively used generative AI to create and implement an ISMS, significantly reducing the resources required. This research studies how the use of generative AI can enhance the process of creating an ISMS. We conducted seven semi-structured interviews held with various stakeholders of the ISMS project, who had varying levels experience in cyber security and AI.
- Abstract(参考訳): ISMS(Information Security Management System)への投資は、組織の競争力を高め、情報資産を保護する。
しかし、ISMSの導入は重要なリソースを消費する。例えば、ISO27001標準に従ってISMSを実装するには、116の異なるコントロールを文書化する必要がある。
本稿では、フィンランドの企業であるKempowerが、ISMSの作成と実装に生成AIを効果的に利用し、必要なリソースを大幅に削減した方法について論じる。
本研究は、生成AIの使用が、IMSの作成プロセスを強化する方法について研究する。
我々は、サイバーセキュリティとAIの様々なレベルの経験を持つICSプロジェクトの様々なステークホルダーと、半構造化された7つのインタビューを行った。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Design of a Quality Management System based on the EU Artificial Intelligence Act [0.0]
EU AI Actは、リスクの高いAIシステムのプロバイダとデプロイ者が品質管理システム(QMS)を確立することを義務付けている。
本稿では,マイクロサービス・ソフトウェア・アズ・ア・サービス・ウェブ・アプリケーションとしてのQMSの設計コンセプトとプロトタイプを紹介する。
論文 参考訳(メタデータ) (2024-08-08T12:14:02Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
その重要性にもかかわらず、AI法に沿ったAIとリスクドキュメントの作成を支援するための標準やガイドラインが欠如している。
提案するAIカードは,AIシステムの意図した使用を表現するための,新しい総合的なフレームワークである。
論文 参考訳(メタデータ) (2024-06-26T09:51:49Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
本稿では,リスクの高いAIシステムに対するEU AI Act要件を解釈するための方法論を提案する。
まず,AIシステムに対する製品品質モデルの拡張を提案し,現行の品質モデルではカバーされない法に関する属性を取り入れた。
次に、ステークホルダーレベルで技術的要件を導出するための契約ベースのアプローチを提案します。
論文 参考訳(メタデータ) (2024-03-25T14:32:18Z) - APPRAISE: a governance framework for innovation with AI systems [0.0]
EU人工知能法(英語: EU Artificial Intelligence Act、AIA)は、AIシステムの有害な影響を封じ込めようとする最初の重大な立法の試みである。
本稿では,AIイノベーションのためのガバナンスフレームワークを提案する。
このフレームワークは戦略変数と責任ある価値創造のギャップを埋める。
論文 参考訳(メタデータ) (2023-09-26T12:20:07Z) - On Realization of Intelligent Decision-Making in the Real World: A
Foundation Decision Model Perspective [54.38373782121503]
FDM(Foundation Decision Model)は、様々な意思決定タスクをシーケンスデコーディングタスクとして定式化することで開発することができる。
本稿では、FDMの実装であるDigitalBrain(DB1)を13億のパラメータで実証し、870のタスクで人間レベルのパフォーマンスを達成するケーススタディを提案する。
論文 参考訳(メタデータ) (2022-12-24T06:16:45Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - What is Software Quality for AI Engineers? Towards a Thinning of the Fog [9.401273164668092]
本研究の目的は,AI/MLコンポーネントやコードの開発,統合,メンテナンスにおいて採用されるソフトウェア品質保証戦略を検討することである。
インタビューデータの質的分析により、AI/MLコンポーネントの開発における12の課題が明らかになった。
本研究の結果は,AI/MLコンポーネントのソフトウェア品質保証プロセスと技術に関する今後の研究を導くものである。
論文 参考訳(メタデータ) (2022-03-23T19:43:35Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。