論文の概要: Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems
- arxiv url: http://arxiv.org/abs/2409.19140v1
- Date: Fri, 27 Sep 2024 21:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:21:02.497039
- Title: Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems
- Title(参考訳): 制御可能な力学系モデリングのための物理インフォームドエコー状態ネットワーク
- Authors: Eric Mochiutti Eric Aislan Antonelo Eduardo Camponogara,
- Abstract要約: 物理インフォームドESN (PI-ESN) は、外部入力のないカオス力学系をモデル化するために最初に提案された。
PI-ESNは、いくつかのデータポイントで以前にトレーニングされた外部入力でESNモデルを正規化することができ、過度な適合を低減し、一般化エラーを改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echo State Networks (ESNs) are recurrent neural networks usually employed for modeling nonlinear dynamic systems with relatively ease of training. By incorporating physical laws into the training of ESNs, Physics-Informed ESNs (PI-ESNs) were proposed initially to model chaotic dynamic systems without external inputs. They require less data for training since Ordinary Differential Equations (ODEs) of the considered system help to regularize the ESN. In this work, the PI-ESN is extended with external inputs to model controllable nonlinear dynamic systems. Additionally, an existing self-adaptive balancing loss method is employed to balance the contributions of the residual regression term and the physics-informed loss term in the total loss function. The experiments with two nonlinear systems modeled by ODEs, the Van der Pol oscillator and the four-tank system, and with one differential-algebraic (DAE) system, an electric submersible pump, revealed that the proposed PI-ESN outperforms the conventional ESN, especially in scenarios with limited data availability, showing that PI-ESNs can regularize an ESN model with external inputs previously trained on just a few datapoints, reducing its overfitting and improving its generalization error (up to 92% relative reduction in the test error). Further experiments demonstrated that the proposed PI-ESN is robust to parametric uncertainties in the ODE equations and that model predictive control using PI-ESN outperforms the one using plain ESN, particularly when training data is scarce.
- Abstract(参考訳): エコー状態ネットワーク(英語: Echo State Networks, ESN)は、通常、トレーニングの比較的容易な非線形力学系のモデリングに使用されるリカレントニューラルネットワークである。
ESNのトレーニングに物理法則を組み込むことで、外部入力のないカオス力学系をモデル化する物理インフォームドESN(Physical-Informed ESNs)が最初に提案された。
通常の微分方程式(ODE)がESNを規則化するのに役立つので、トレーニングに必要なデータが少なくなります。
本研究では、PI-ESNを外部入力で拡張し、制御可能な非線形力学系をモデル化する。
さらに, 残差項と物理インフォームド損失項の合計損失関数に対する寄与のバランスをとるために, 既存の自己適応的バランス損失法を用いる。
ODEによってモデル化された2つの非線形システム、Van der Pol発振器と4タンクシステム、および1つの微分代数(DAE)システム、電気水圧ポンプによる実験により、提案されたPI-ESNは従来のESNよりも優れており、特にデータ可用性が制限された場合において、PI-ESNはわずか数個のデータポイントでトレーニングされた外部入力でESNモデルを正規化でき、オーバーフィッティングを低減し、その一般化誤差を92%まで改善できることを示した。
さらに実験により,提案したPI-ESNはODE方程式のパラメトリック不確実性に対して頑健であり,PI-ESNを用いたモデル予測制御は,訓練データが少ない場合,通常のESNを用いたモデル予測よりも優れていることを示した。
関連論文リスト
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた力学系の同定と推定について検討する。
PINNは、既知の物理法則をニューラルネットワークの損失関数に直接埋め込むことによって、複雑な現象の単純な埋め込みを可能にするユニークな利点を提供する。
その結果、PINNは上記のすべてのタスクに対して、たとえモデルエラーがあっても、効率的なツールを提供することを示した。
論文 参考訳(メタデータ) (2024-10-02T08:58:30Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
本稿では,物理インフォームドニューラルネットワーク(PINN),従来のニューラルネットワーク(NN),および微分方程式(DE)に関する従来の数値離散化法を比較した。
我々は,ソフト制約のPINNアプローチに注目し,その数学的枠組みと計算フローを正規Dsと部分Dsの解法として定式化した。
我々は、PINNのDeepXDEベースの実装が、トレーニングにおいて軽量コードであり、効率的なだけでなく、CPU/GPUプラットフォーム間で柔軟なことを実証した。
論文 参考訳(メタデータ) (2024-08-19T13:02:06Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Physics-Informed Neural Nets-based Control [5.252190504926357]
この研究は、Physical-Informed Neural Nets-based Control (PINC)と呼ばれる新しいフレームワークを提示する。
PINCは問題を制御でき、事前に固定されていない長距離時間地平線をシミュレートすることができる。
本手法を2つの非線形動的システムの制御において紹介する。
論文 参考訳(メタデータ) (2021-04-06T14:55:23Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Physics-Informed Neural Networks for Non-linear System Identification
for Power System Dynamics [0.0]
本稿では,将来の電力系統の周波数ダイナミクスを発見するための物理情報ニューラルネットワーク(PINN)の性能について検討する。
PINNは、低慣性システムのより強い非線形性、測定ノイズの増加、データの可用性の制限といった課題に対処する可能性がある。
論文 参考訳(メタデータ) (2020-04-08T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。