Enhancing the ODMR Signal of Organic Molecular Qubits
- URL: http://arxiv.org/abs/2409.19249v2
- Date: Tue, 1 Oct 2024 18:37:49 GMT
- Title: Enhancing the ODMR Signal of Organic Molecular Qubits
- Authors: Yong Rui Poh, Joel Yuen-Zhou,
- Abstract summary: In quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface.
Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres.
In our earlier attempt at designing such organic high-spin $pi$-diradicals, we proposed to spin-polarise by shelving triplet $M_S=pm1$ populations as singlets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the fields of quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface, a process known as optically-detected magnetic resonance (ODMR). Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres, while metal-free molecular analogues are also gaining popularity for their extended polarisation lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin $\pi$-diradicals, we proposed to spin-polarise by shelving triplet $M_{S}=\pm1$ populations as singlets. This was recently verified by experiments albeit with low ODMR contrasts of <1% at temperatures above 5 K. In this work, we propose to improve the ODMR signal by moving singlet populations back into the triplet $M_{S}=0$ sublevel, designing a true carbon-based molecular analogue to the NV centre. To achieve both spin channels in $\pi$-diradicals, we leverage on weaker spin-orbit couplings beyond the nearest-neighbour approximation, made possible by careful control of orbital nodal structures and group-theoretical considerations. These analyses are further confirmed by ab initio calculations of a realistic trityl-based radical dimer. Microkinetic analyses point towards high ODMR contrasts of around 30% under experimentally-feasible conditions, a stark improvement from previous works. Finally, in our quest towards ground-state optically-addressable molecular spin qubits, we exemplify how our symmetry-based design avoids Zeeman-induced singlet-triplet mixings during electron paramagnetic resonance (EPR) experiments, setting the scene for realising electron spin qubit gates.
Related papers
- Alternant Hydrocarbon Diradicals as Optically Addressable Molecular Qubits [0.0]
High-spin molecules allow for bottom-up qubit design and are promising platforms for magnetic sensing and quantum information science.
We use alternancy symmetry to selectively minimise radical-radical interactions in the ground state, generating $pi$-systems with high diradical characters.
arXiv Detail & Related papers (2024-03-14T04:51:17Z) - Semi-Empirical Haken-Strobl Model for Molecular Spin Qubits [0.0]
Recent measurements of solid-state molecular spin qubits have stimulated the development of quantum mechanical models for predicting intrinsic spin qubit timescales.
We develop an alternative semi-empirical approach to construct Redfield quantum master equations for molecular spin qubits using a Haken-Strobl model for a central spin with a fluctuating local magnetic field.
arXiv Detail & Related papers (2023-06-23T21:27:02Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Decoupling of Spin Decoherence Paths near Zero Magnetic Field [0.0]
We demonstrate a method to quantify and manipulate nuclear spin decoherence mechanisms that are active in zero to ultralow magnetic fields.
The method should broaden the spectrum of hyperpolarized biomedical contrast-agent compounds and hyperpolarization procedures that are used near zero field.
arXiv Detail & Related papers (2021-12-16T00:08:08Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Maximising Dynamic Nuclear Polarisation via Selective Hyperfine Tuning [0.0]
We show that for systems of electronic spin $Sgeq1$ possessing an intrinsic zero-field splitting, a separate class of stronger hyperfine interactions may be utilised to improve DNP efficiency and yield.
We analytically review existing methods, and determine that this approach increases the rate of polarisation transfer to the nuclear ensemble by up to an order of magnitude over existing techniques.
arXiv Detail & Related papers (2020-12-23T06:19:15Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.