論文の概要: Designing Domain-Specific Large Language Models: The Critical Role of Fine-Tuning in Public Opinion Simulation
- arxiv url: http://arxiv.org/abs/2409.19308v2
- Date: Sat, 07 Dec 2024 11:06:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:51:20.605229
- Title: Designing Domain-Specific Large Language Models: The Critical Role of Fine-Tuning in Public Opinion Simulation
- Title(参考訳): ドメイン特有な大規模言語モデルの設計--パブリックオピニオンシミュレーションにおけるファインチューニングの役割
- Authors: Haocheng Lin,
- Abstract要約: 本稿では,英国家庭縦断研究の社会デマトグラフィーデータを統合した,新しい微調整手法を提案する。
多様な合成プロファイルをエミュレートすることで、微調整されたモデルは、事前訓練されたモデルよりも大幅に優れている。
より広範な意味は、医療や教育などの分野にLLMをデプロイすること、包括的でデータ駆動型意思決定を促進することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) have transformed natural language processing, yet face challenges in specialized tasks such as simulating opinions on environmental policies. This paper introduces a novel fine-tuning approach that integrates socio-demographic data from the UK Household Longitudinal Study, uniquely using profiling factors, such as age, gender, income, education, and region. This method enhances the accuracy and representation of generated views. By emulating diverse synthetic profiles, the fine-tuned models significantly outperform pre-trained counterparts, achieving measurable improvements in capturing demographic nuances. Evaluation metrics, including Chi-Squared, Cosine Similarity, Jaccard Index, and KL-divergence, reveal a strong alignment between synthetic and real-world opinions. This work demonstrates the potential of fine-tuned LLMs tailored to societal contexts to enable more ethical and precise policy simulations. Its broader implications include deploying LLMs in domains like healthcare and education, fostering inclusive and data-driven decision-making in both research and practice.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理を変革してきたが、環境政策に関する意見をシミュレートするといった専門的な課題に直面している。
本稿では,英国家庭縦断調査から得られた社会デモグラフィーデータを,年齢,性別,収入,教育,地域などのプロファイリング要因を用いて統合する,新たな微調整手法を提案する。
この方法は生成したビューの精度と表現を高める。
多様な合成プロファイルをエミュレートすることで、微調整されたモデルは事前訓練されたモデルよりも大幅に優れ、人口統計学的なニュアンスを捉えるための測定可能な改善を実現した。
Chi-Squared、Cosine similarity、Jaccard Index、KL-divergenceなどの評価指標は、合成と現実世界の意見の強い一致を示している。
この研究は、より倫理的で正確な政策シミュレーションを可能にするために、社会的文脈に合わせて調整された微調整 LLM の可能性を示す。
その大きな意味は、医療や教育のような分野にLLMを配置すること、研究と実践の両方において包括的でデータ駆動的な意思決定を促進することである。
関連論文リスト
- Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
大規模言語モデル(LLM)の文脈内学習(ICL)の振る舞いを分析するための学習分析フレームワークを提案する。
我々は,各例のモデル性能に基づいて,LLMのZPDを測定することにより,ZPD理論をICLに適用する。
本研究はICLの複雑な多面的動作を明らかにし,この手法の理解と活用に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2025-02-10T19:36:21Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Agentic Society: Merging skeleton from real world and texture from Large Language Model [4.740886789811429]
本稿では,人口統計データと大規模言語モデルを利用して仮想人口を生成する新しい枠組みについて検討する。
本手法は,社会科学実験において,多様な人間の行動のシミュレーションに不可欠な多様性のあるペルソナを生産することを示す。
しかし, 評価結果から, 現在のLSMの能力に限界があるため, 統計的真理性の弱い兆候しか得られないことが示唆された。
論文 参考訳(メタデータ) (2024-09-02T08:28:19Z) - Towards "Differential AI Psychology" and in-context Value-driven Statement Alignment with Moral Foundations Theory [0.0]
本研究は,Moral Foundationのアンケートにおいて,パーソナライズされた言語モデルと調査参加者のアライメントについて検討する。
我々は、異なる政治的ペルソナにテキスト・トゥ・テキスト・モデルを適用し、繰り返しアンケートを行い、ペルソナとモデルの組み合わせの合成人口を生成する。
その結果, 適応型モデルでは, 政治的イデオロギーに対する調査をリードする評価が困難であることが示唆された。
論文 参考訳(メタデータ) (2024-08-21T08:20:41Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - PoliTune: Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in Large Language Models [1.1704154007740835]
大規模言語モデル(LLM)における微調整とデータ選択が経済的・政治的バイアスに与える影響について検討する。
特定のイデオロギーとLLMの整合性を検討するための微調整手法であるPoliTuneを紹介した。
我々は、データセットの選択、アノテーション、DPO(Direct Preference Optimization)のための選好データセットの合成にオープンソースのLlama3-70Bを使用する体系的手法を導入し、そのモデルと所定の政治的イデオロギーを整合させる。
論文 参考訳(メタデータ) (2024-04-10T16:30:09Z) - Can Large Language Models Understand Context? [17.196362853457412]
本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
論文 参考訳(メタデータ) (2024-02-01T18:55:29Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。