論文の概要: Designing Domain-Specific Large Language Models: The Critical Role of Fine-Tuning in Public Opinion Simulation
- arxiv url: http://arxiv.org/abs/2409.19308v2
- Date: Sat, 07 Dec 2024 11:06:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:51:20.605229
- Title: Designing Domain-Specific Large Language Models: The Critical Role of Fine-Tuning in Public Opinion Simulation
- Title(参考訳): ドメイン特有な大規模言語モデルの設計--パブリックオピニオンシミュレーションにおけるファインチューニングの役割
- Authors: Haocheng Lin,
- Abstract要約: 本稿では,英国家庭縦断研究の社会デマトグラフィーデータを統合した,新しい微調整手法を提案する。
多様な合成プロファイルをエミュレートすることで、微調整されたモデルは、事前訓練されたモデルよりも大幅に優れている。
より広範な意味は、医療や教育などの分野にLLMをデプロイすること、包括的でデータ駆動型意思決定を促進することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) have transformed natural language processing, yet face challenges in specialized tasks such as simulating opinions on environmental policies. This paper introduces a novel fine-tuning approach that integrates socio-demographic data from the UK Household Longitudinal Study, uniquely using profiling factors, such as age, gender, income, education, and region. This method enhances the accuracy and representation of generated views. By emulating diverse synthetic profiles, the fine-tuned models significantly outperform pre-trained counterparts, achieving measurable improvements in capturing demographic nuances. Evaluation metrics, including Chi-Squared, Cosine Similarity, Jaccard Index, and KL-divergence, reveal a strong alignment between synthetic and real-world opinions. This work demonstrates the potential of fine-tuned LLMs tailored to societal contexts to enable more ethical and precise policy simulations. Its broader implications include deploying LLMs in domains like healthcare and education, fostering inclusive and data-driven decision-making in both research and practice.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理を変革してきたが、環境政策に関する意見をシミュレートするといった専門的な課題に直面している。
本稿では,英国家庭縦断調査から得られた社会デモグラフィーデータを,年齢,性別,収入,教育,地域などのプロファイリング要因を用いて統合する,新たな微調整手法を提案する。
この方法は生成したビューの精度と表現を高める。
多様な合成プロファイルをエミュレートすることで、微調整されたモデルは事前訓練されたモデルよりも大幅に優れ、人口統計学的なニュアンスを捉えるための測定可能な改善を実現した。
Chi-Squared、Cosine similarity、Jaccard Index、KL-divergenceなどの評価指標は、合成と現実世界の意見の強い一致を示している。
この研究は、より倫理的で正確な政策シミュレーションを可能にするために、社会的文脈に合わせて調整された微調整 LLM の可能性を示す。
その大きな意味は、医療や教育のような分野にLLMを配置すること、研究と実践の両方において包括的でデータ駆動的な意思決定を促進することである。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - GLEE: A Unified Framework and Benchmark for Language-based Economic Environments [19.366120861935105]
大規模言語モデル(LLM)は、経済的および戦略的相互作用において大きな可能性を示す。
これらの疑問は、LLMベースのエージェントを実世界のデータ駆動システムに統合することの経済的および社会的意味について重要なものとなっている。
本稿では,2プレイヤー,シーケンシャル,言語ベースのゲームの研究を標準化するためのベンチマークを紹介する。
論文 参考訳(メタデータ) (2024-10-07T17:55:35Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
近年の多目的大言語モデル(LLM)の急激な増加は、より有能な基礎モデルと人間の意図を優先学習によって整合させることに大きく依存している。
本調査では、選好フィードバックのソースとフォーマット、選好信号のモデリングと使用、および、整列 LLM の評価について述べる。
論文 参考訳(メタデータ) (2024-06-17T03:52:51Z) - Understanding Intrinsic Socioeconomic Biases in Large Language Models [4.276697874428501]
本稿では,社会経済的バイアスを定量化するために,100万の英語文からなる新しいデータセットを提案する。
以上の結果から,GPT-2のような確立されたモデルと,Llama 2やFalconのような最先端のモデルの両方において,社会経済的バイアスが広範にあることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-28T23:54:44Z) - PoliTune: Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in Large Language Models [1.1704154007740835]
大規模言語モデル(LLM)における微調整とデータ選択が経済的・政治的バイアスに与える影響について検討する。
特定のイデオロギーとLLMの整合性を検討するための微調整手法であるPoliTuneを紹介した。
我々は、データセットの選択、アノテーション、DPO(Direct Preference Optimization)のための選好データセットの合成にオープンソースのLlama3-70Bを使用する体系的手法を導入し、そのモデルと所定の政治的イデオロギーを整合させる。
論文 参考訳(メタデータ) (2024-04-10T16:30:09Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
大規模言語モデル(LLM)に固有の内在的一般化能力に微調整が及ぼす影響について検討する。
本研究の主目的は、生成タスクと分類タスクを微調整したモデルが、異なる領域やタスクに一般化する際に異なる振る舞いを示すことである。
生成タスクの微調整中にコンテキスト内学習戦略を統合することで、モデルの一般化能力を高めることができる。
論文 参考訳(メタデータ) (2024-03-14T08:18:59Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
本稿では,異なる学問分野におけるLarge Language Models(LLM)の機能と制約について述べる。
本稿では, LLM が学術調査の強化を図り, 大量の出版物を要約することで, 文献レビューの促進などの具体的な事例を提示する。
LLMが直面する課題には、広範囲で偏見のあるデータセットへの依存や、それらの使用から生じる潜在的な倫理的ジレンマが含まれる。
論文 参考訳(メタデータ) (2023-11-03T19:41:09Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。