HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations
- URL: http://arxiv.org/abs/2409.19487v3
- Date: Thu, 7 Nov 2024 03:05:18 GMT
- Title: HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations
- Authors: Ziyu Wang, Hao Li, Di Huang, Amir M. Rahmani,
- Abstract summary: In digital healthcare, large language models (LLMs) have primarily been utilized to enhance question-answering capabilities.
This paper presents HealthQ, a novel framework designed to evaluate the questioning capabilities of LLM healthcare chains.
- Score: 23.09755446991835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In digital healthcare, large language models (LLMs) have primarily been utilized to enhance question-answering capabilities and improve patient interactions. However, effective patient care necessitates LLM chains that can actively gather information by posing relevant questions. This paper presents HealthQ, a novel framework designed to evaluate the questioning capabilities of LLM healthcare chains. We implemented several LLM chains, including Retrieval-Augmented Generation (RAG), Chain of Thought (CoT), and reflective chains, and introduced an LLM judge to assess the relevance and informativeness of the generated questions. To validate HealthQ, we employed traditional Natural Language Processing (NLP) metrics such as Recall-Oriented Understudy for Gisting Evaluation (ROUGE) and Named Entity Recognition (NER)-based set comparison, and constructed two custom datasets from public medical note datasets, ChatDoctor and MTS-Dialog. Our contributions are threefold: we provide the first comprehensive study on the questioning capabilities of LLMs in healthcare conversations, develop a novel dataset generation pipeline, and propose a detailed evaluation methodology.
Related papers
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.
Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.
We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.
We propose a novel approach utilizing structured medical reasoning.
Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - EchoQA: A Large Collection of Instruction Tuning Data for Echocardiogram Reports [0.0]
We introduce a novel question-answering (QA) dataset using echocardiogram reports sourced from the Medical Information Mart for Intensive Care database.
This dataset is specifically designed to enhance QA systems in cardiology, consisting of 771,244 QA pairs addressing a wide array of cardiac abnormalities and their severity.
We compare large language models (LLMs), including open-source and biomedical-specific models for zero-shot evaluation, and closed-source models for zero-shot and three-shot evaluation.
arXiv Detail & Related papers (2025-03-04T07:45:45Z) - MeDiSumQA: Patient-Oriented Question-Answer Generation from Discharge Letters [1.6135243915480502]
Large language models (LLMs) offer solutions by simplifying medical information.
evaluating LLMs for safe and patient-friendly text generation is difficult due to the lack of standardized evaluation resources.
MeDiSumQA is a dataset created from MIMIC-IV discharge summaries through an automated pipeline.
arXiv Detail & Related papers (2025-02-05T15:56:37Z) - Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation.
This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA and the Retrieval-Augmented Generation framework.
arXiv Detail & Related papers (2025-02-04T11:50:40Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
arXiv Detail & Related papers (2024-10-25T17:06:27Z) - The Geometry of Queries: Query-Based Innovations in Retrieval-Augmented Generation [1.2839205715237014]
Large Language Models (LLMs) have the potential to significantly improve personal health management for chronic conditions.
LLMs generate responses based on patterns learned from diverse internet data.
Retrieval Augmented Generation (RAG) can help mitigate hallucinations and inaccuracies in RAG responses.
arXiv Detail & Related papers (2024-07-25T13:47:01Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering [5.065947993017158]
Large Language Models (LLMs) have demonstrated an impressive ability to encode knowledge during pre-training on large text corpora.
We examine the capability of LLMs to exhibit medical knowledge recall by constructing a novel dataset derived from systematic reviews.
arXiv Detail & Related papers (2024-06-09T16:33:28Z) - K-QA: A Real-World Medical Q&A Benchmark [12.636564634626422]
We construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on K Health.
We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements.
We evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes.
arXiv Detail & Related papers (2024-01-25T20:11:04Z) - LLM on FHIR -- Demystifying Health Records [0.32985979395737786]
This study developed an app allowing users to interact with their health records using large language models (LLMs)
The app effectively translated medical data into patient-friendly language and was able to adapt its responses to different patient profiles.
arXiv Detail & Related papers (2024-01-25T17:45:34Z) - A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics [32.10937977924507]
The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern.
This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process.
arXiv Detail & Related papers (2023-10-09T13:15:23Z) - Integrating UMLS Knowledge into Large Language Models for Medical
Question Answering [18.06960842747575]
Large language models (LLMs) have demonstrated powerful text generation capabilities, bringing unprecedented innovation to the healthcare field.
We develop an augmented LLM framework based on the Unified Medical Language System (UMLS), aiming to better serve the healthcare community.
We employ LLaMa2-13b-chat and ChatGPT-3.5 as our benchmark models, and conduct automatic evaluations using the ROUGE Score and BERTScore on 104 questions from the LiveQA test set.
arXiv Detail & Related papers (2023-10-04T12:50:26Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.