論文の概要: Machine Learning for Raman Spectroscopy-based Cyber-Marine Fish Biochemical Composition Analysis
- arxiv url: http://arxiv.org/abs/2409.19688v1
- Date: Sun, 29 Sep 2024 12:28:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:45.679141
- Title: Machine Learning for Raman Spectroscopy-based Cyber-Marine Fish Biochemical Composition Analysis
- Title(参考訳): ラマン分光法による魚介類生化学組成分析のための機械学習
- Authors: Yun Zhou, Gang Chen, Bing Xue, Mengjie Zhang, Jeremy S. Rooney, Kirill Lagutin, Andrew MacKenzie, Keith C. Gordon, Daniel P. Killeen,
- Abstract要約: 本稿では,水,タンパク質,脂質の収量を共同で予測する畳み込みニューラルネットワーク(CNN)の設計を提案する。
我々は、非常に小さなラマン分光データセットに基づいて魚類の生化学的組成を分析するために、CNNを用いた最初の研究を行った。
- 参考スコア(独自算出の注目度): 7.075575292983362
- License:
- Abstract: The rapid and accurate detection of biochemical compositions in fish is a crucial real-world task that facilitates optimal utilization and extraction of high-value products in the seafood industry. Raman spectroscopy provides a promising solution for quickly and non-destructively analyzing the biochemical composition of fish by associating Raman spectra with biochemical reference data using machine learning regression models. This paper investigates different regression models to address this task and proposes a new design of Convolutional Neural Networks (CNNs) for jointly predicting water, protein, and lipids yield. To the best of our knowledge, we are the first to conduct a successful study employing CNNs to analyze the biochemical composition of fish based on a very small Raman spectroscopic dataset. Our approach combines a tailored CNN architecture with the comprehensive data preparation procedure, effectively mitigating the challenges posed by extreme data scarcity. The results demonstrate that our CNN can significantly outperform two state-of-the-art CNN models and multiple traditional machine learning models, paving the way for accurate and automated analysis of fish biochemical composition.
- Abstract(参考訳): 魚の生化学成分の迅速かつ正確な検出は,魚介類産業における高付加価値製品の最適利用と抽出を容易にする重要な実世界の課題である。
ラマン分光法は、機械学習回帰モデルを用いて、ラマンスペクトルと生化学参照データとを関連付けることにより、魚の生化学組成を迅速かつ非破壊的に分析するための有望なソリューションを提供する。
本稿では, この課題に対処するさまざまな回帰モデルについて検討し, 水, タンパク質, 脂質の収量を予測するために, 畳み込みニューラルネットワーク(CNN)の新たな設計を提案する。
我々の知る限りでは、非常に小さなラマン分光データセットに基づいて魚の生化学的組成を分析するために、CNNを用いて成功した研究を最初に行った。
当社のアプローチでは,CNNアーキテクチャと包括的データ準備手順を組み合わせることで,極端なデータ不足による課題を効果的に軽減する。
その結果、我々のCNNは2つの最先端のCNNモデルと複数の従来の機械学習モデルを大きく上回り、魚の生化学組成の正確かつ自動分析の道を開くことができた。
関連論文リスト
- Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
蛍光分光法は生命科学や化学の基本的な道具であり、環境モニタリング、食品品質管理、生物医学診断などの応用に広く用いられている。
深層学習を用いた分光データの解析、特に蛍光励起放出行列(EEM)は、通常、小さくてスパースなデータセットが利用できるため、大きな課題を提起する。
本研究では、これらの課題に対処する新しい解釈可能性アルゴリズムとともに、事前学習された視覚モデルによるドメイン適応を利用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-14T13:41:21Z) - Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL [1.840390797252648]
ディープラーニングは、シリコン内予測と生体内観測のギャップを埋めることのできる強力なツールとして、ますます認識されている。
タンパク質複合体中のアミノ酸置換物からの結合親和性変化を予測するための新しいグラフニューラルネットワークアーキテクチャであるeGRALを提案する。
eGralは、タンパク質の大規模言語モデルから抽出された特徴のおかげで、残基、原子スケール、進化スケールを利用する。
論文 参考訳(メタデータ) (2024-05-03T10:33:19Z) - Intelligent Chemical Purification Technique Based on Machine Learning [5.023197681500998]
本研究では, カラムクロマトグラフィーを用いた人工知能の革新的開発を行い, 不効率を解消し, 化学分離・浄化領域におけるデータの収集を標準化することを目的とする。
高精度なデータ取得と高度な機械学習アルゴリズムを用いた自動プラットフォームの開発により、キー分離パラメータを予測する予測モデルを構築した。
新規な計量である分離確率(S_p$)は、有効化合物分離の確率を定量化し、実験的な検証によって検証する。
論文 参考訳(メタデータ) (2024-04-14T01:44:58Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Predicting Chemical Hazard across Taxa through Machine Learning [0.3262230127283452]
分類学と実験装置の関連性を分析し,それらを考慮に入れれば,分類性能の大幅な向上が期待できることを示す。
我々は、一般的な機械学習モデル(K-nearest neighbors、ランダムフォレスト、ディープニューラルネットワーク)と、最近提案されたリード・アクロス構造活動関係(RASAR)モデルを用いています。
論文 参考訳(メタデータ) (2021-10-07T15:33:58Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
有機化学反応をモデル化するために,グラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
論文 参考訳(メタデータ) (2020-07-08T17:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。