論文の概要: Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics
- arxiv url: http://arxiv.org/abs/2409.19838v2
- Date: Tue, 31 Dec 2024 03:33:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:33:03.939310
- Title: Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics
- Title(参考訳): トークンミキサーを用いた事前学習グラフニューラルネットワークによるコンフォメーションダイナミクスの幾何的加工法
- Authors: Zihan Pengmei, Chatipat Lorpaiboon, Spencer C. Guo, Jonathan Weare, Aaron R. Dinner,
- Abstract要約: 我々はGeom2vecを導入し、トレーニング済みグラフニューラルネットワーク(GNN)を普遍的な幾何演算器として利用する。
学習したGNN表現は,表現型トークンミキサーと組み合わせることで,構造単位(トークン)間の解釈可能な関係を捉えることができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses.
- Abstract(参考訳): 分子シミュレーションの力学を特徴付ける情報的低次元の特徴を特定することは、しばしば手動チューニングとシステム固有の知識を必要とする。
ここでは,事前学習されたグラフニューラルネットワーク(GNN)を普遍的な幾何演算器として用いるgeom2vecを紹介する。
分子配座の大規模データセット上の同変GNNの事前学習により、さらに微調整をせずに共形力学を学習するのに有用な伝達可能な構造表現を得る。
学習したGNN表現は,表現型トークンミキサーと組み合わせることで,構造単位(トークン)間の解釈可能な関係を捉えることができることを示す。
重要なことは、GNNを下流タスクのトレーニングから切り離すことで、計算資源が限られている大きな分子グラフ(全原子分解能の小さなタンパク質など)を解析することができる。
このような方法では、geom2vecは手動の特徴選択の必要性を排除し、シミュレーション解析の堅牢性を高める。
関連論文リスト
- Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer [15.302727191576784]
全原子情報を持つ幾何学グラフニューラルネットワーク(Geom-GNN)は、原子論シミュレーションを変換した。
本研究では,Geom-GNNの自己教師付き事前学習,教師付き学習,教師なし学習環境におけるスケーリング行動について検討する。
我々は、全ての原子グラフの埋め込みが他の神経アーキテクチャと有機的に組み合わされ、表現力を高めることができることを示す。
論文 参考訳(メタデータ) (2024-10-29T03:07:33Z) - Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
我々は,幾何学的GNNの汎用エンハンサーであるNeural P$3$Mを導入し,その機能範囲を拡大する。
幅広い分子系に柔軟性を示し、エネルギーと力を予測する際、顕著な精度を示す。
また、さまざまなアーキテクチャを統合しながら、OE62データセットで平均22%の改善も達成している。
論文 参考訳(メタデータ) (2024-09-26T08:16:59Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - CTAGE: Curvature-Based Topology-Aware Graph Embedding for Learning
Molecular Representations [11.12640831521393]
分子グラフデータから構造的洞察を抽出するために,$k$hopの離散リッチ曲率を用いたCTAGEの埋め込み手法を提案する。
その結果,ノード曲率の導入は,現在のグラフニューラルネットワークフレームワークの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-25T06:13:01Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
本稿では, グラフニューラルネットワーク(GNN)を用いて, カーネル平均埋め込みとともに, 化学環境を表現するトランスファー学習アルゴリズムを提案する。
我々は,複雑性を増大させる一連の現実的なデータセットに対して,我々のアプローチを検証し,優れた一般化と伝達可能性性能を示す。
論文 参考訳(メタデータ) (2023-06-02T14:58:16Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
グラフトポロジ情報をグラフニューラルネットワーク(GNN)に符号化することを目的とした知識伝達の新しいパラダイムについて検討する。
本稿では,GNNのアーキテクチャに関する基礎となる多様体の幾何学的性質をカプセル化するためのニューラルヒートカーネル(NHK)を提案する。
基本的な原理的解法は、NHKを幾何学的知識蒸留(Geometric Knowledge Distillation)と呼ばれる教師モデルと学生モデルに合わせることで導かれる。
論文 参考訳(メタデータ) (2022-10-24T08:01:58Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。