論文の概要: GearTrack: Automating 6D Pose Estimation
- arxiv url: http://arxiv.org/abs/2409.19986v1
- Date: Mon, 30 Sep 2024 06:26:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:03:52.165396
- Title: GearTrack: Automating 6D Pose Estimation
- Title(参考訳): GearTrack: 6D Poseの推定を自動化する
- Authors: Yu Deng, Teng Cao, Jiahong Xue,
- Abstract要約: 我々は,FoundationPose,SAM2,LightGlueを統合することで,産業アプリケーションにおけるリアルタイム6Dオブジェクト検出のための堅牢なソリューションを開発した。
アルゴリズムはターゲットオブジェクトのCADモデルのみを必要とし、ユーザは初期設定中にライブフィードの場所をクリックします。
YCBデータセットと漂白機やギアなどの産業用部品でテストされ、アルゴリズムは信頼性の高い6D検出と追跡を実証した。
- 参考スコア(独自算出の注目度): 3.5073448176530033
- License:
- Abstract: We developed a robust solution for real-time 6D object detection in industrial applications by integrating FoundationPose, SAM2, and LightGlue, eliminating the need for retraining. Our approach addresses two key challenges: the requirement for an initial object mask in the first frame in FoundationPose and issues with tracking loss and automatic rotation for symmetric objects. The algorithm requires only a CAD model of the target object, with the user clicking on its location in the live feed during the initial setup. Once set, the algorithm automatically saves a reference image of the object and, in subsequent runs, employs LightGlue for feature matching between the object and the real-time scene, providing an initial prompt for detection. Tested on the YCB dataset and industrial components such as bleach cleanser and gears, the algorithm demonstrated reliable 6D detection and tracking. By integrating SAM2 and FoundationPose, we effectively mitigated common limitations such as the problem of tracking loss, ensuring continuous and accurate tracking under challenging conditions like occlusion or rapid movement.
- Abstract(参考訳): 我々は、FoundationPose、SAM2、LightGlueを統合して、産業アプリケーションにおけるリアルタイム6Dオブジェクト検出のための堅牢なソリューションを開発し、再トレーニングの必要性を排除した。
提案手法は,FoundationPoseの第1フレームにおける初期オブジェクトマスクの要件と,対称オブジェクトのトラッキング損失と自動回転に関する課題の2つに対処する。
アルゴリズムはターゲットオブジェクトのCADモデルのみを必要とし、ユーザは初期設定中にライブフィードの場所をクリックします。
一度設定すると、アルゴリズムはオブジェクトの参照画像を自動で保存し、その後、オブジェクトとリアルタイムシーンの間の特徴マッチングにLightGlueを使用し、最初の検出プロンプトを提供する。
YCBデータセットと漂白機やギアなどの産業用部品でテストされ、アルゴリズムは信頼性の高い6D検出と追跡を実証した。
SAM2とFoundationPoseを統合することにより、障害追跡の問題や、閉塞や急速移動といった困難な条件下での連続的かつ正確な追跡といった、一般的な制限を効果的に緩和する。
関連論文リスト
- TrackAgent: 6D Object Tracking via Reinforcement Learning [24.621588217873395]
我々は、オブジェクト追跡を強化されたポイントクラウド(深部のみ)アライメントタスクに単純化することを提案する。
これにより、スクラッチからスクラッチからスパース3Dポイントクラウドをトレーニングすることができます。
また、RLエージェントの不確かさとレンダリングベースのマスク伝搬が効果的な再起動トリガであることを示す。
論文 参考訳(メタデータ) (2023-07-28T17:03:00Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
最近の6Dオブジェクトのポーズ推定方法は、最初にオブジェクト検出を使用して2Dバウンディングボックスを取得し、実際にポーズを回帰する。
本研究では,6次元ポーズ推定において対象物体が剛性であるという事実を利用した剛性認識検出手法を提案する。
このアプローチの成功の鍵となるのは可視性マップであり、これは境界ボックス内の各ピクセルとボックス境界の間の最小障壁距離を用いて構築することを提案する。
論文 参考訳(メタデータ) (2023-03-22T09:02:54Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
本研究では,多目的追跡のための双方向マッチングアルゴリズムを提案する。
ストランド領域はマッチングアルゴリズムで使われ、追跡できないオブジェクトを一時的に保存する。
MOT17チャレンジでは、提案アルゴリズムは63.4%のMOTA、55.3%のIDF1、20.1のFPS追跡速度を達成した。
論文 参考訳(メタデータ) (2023-03-15T08:38:08Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
本稿では,自己教師対象検出のための制御可能なGANを用いたエンドツーエンド分析合成フレームワークを提案する。
オブジェクトの合成と検出を学習するために、ボックスアノテーションを使用せずに、実世界のイメージのコレクションを使用します。
我々の研究は、制御可能なGAN画像合成という新しいパラダイムを導入することで、自己教師対象検出の分野を前進させる。
論文 参考訳(メタデータ) (2021-10-19T11:04:05Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
LiDARポイントクラウドにおける3Dマルチオブジェクトトラッキングは、自動運転車にとって重要な要素である。
既存の手法は、主にトラッキング・バイ・検出パイプラインに基づいており、検出アソシエーションのマッチングステップが必然的に必要である。
我々は,手作りの追跡パラダイムをシンプルにするために,原点雲からの共同検出と追跡のためのエンドツーエンドのトレーニング可能なモデルを提案する。
論文 参考訳(メタデータ) (2021-08-23T17:59:22Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Detecting Invisible People [58.49425715635312]
我々は,追跡ベンチマークを再利用し,目立たない物体を検出するための新しい指標を提案する。
私たちは、現在の検出および追跡システムがこのタスクで劇的に悪化することを実証します。
第2に,最先端の単眼深度推定ネットワークによる観測結果を用いて,3次元で明示的に推論する動的モデルを構築した。
論文 参考訳(メタデータ) (2020-12-15T16:54:45Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。