論文の概要: Segmenting Wood Rot using Computer Vision Models
- arxiv url: http://arxiv.org/abs/2409.20137v1
- Date: Mon, 30 Sep 2024 09:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 13:17:59.023551
- Title: Segmenting Wood Rot using Computer Vision Models
- Title(参考訳): コンピュータビジョンモデルを用いた木根のセグメンテーション
- Authors: Roland Kammerbauer, Thomas H. Schmitt, Tobias Bocklet,
- Abstract要約: 木製丸太の欠陥を検出し,定量化し,局所化するAIモデルを提案する。
このモデルは品質管理プロセスを自動化し、より一貫性があり信頼性の高い品質評価を提供することを目的としています。
- 参考スコア(独自算出の注目度): 4.265707417722819
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the woodworking industry, a huge amount of effort has to be invested into the initial quality assessment of the raw material. In this study we present an AI model to detect, quantify and localize defects on wooden logs. This model aims to both automate the quality control process and provide a more consistent and reliable quality assessment. For this purpose a dataset of 1424 sample images of wood logs is created. A total of 5 annotators possessing different levels of expertise is involved in dataset creation. An inter-annotator agreement analysis is conducted to analyze the impact of expertise on the annotation task and to highlight subjective differences in annotator judgement. We explore, train and fine-tune the state-of-the-art InternImage and ONE-PEACE architectures for semantic segmentation. The best model created achieves an average IoU of 0.71, and shows detection and quantification capabilities close to the human annotators.
- Abstract(参考訳): 木工業界では,原材料の品質評価に多大な労力を費やす必要がある。
本研究では,木製丸太の欠陥の検出,定量化,局所化を行うAIモデルを提案する。
このモデルは品質管理プロセスを自動化し、より一貫性があり信頼性の高い品質評価を提供することを目的としています。
この目的のために、木製丸太の1424枚のサンプル画像のデータセットを作成する。
データセット作成には、さまざまなレベルの専門知識を持つ合計5つのアノテータが関与している。
アノテーションタスクに対する専門知識の影響を分析し、アノテーション判断における主観的差異を明らかにするために、アノテーション間の合意分析を行う。
セマンティックセグメンテーションのための最先端のインターンイメージとONE-PEACEアーキテクチャを探索し、訓練し、微調整する。
生成した最良のモデルは平均IoU0.71で、人間のアノテータに近い検出と定量化能力を示す。
関連論文リスト
- Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - Performance evaluation of Reddit Comments using Machine Learning and Natural Language Processing methods in Sentiment Analysis [0.764671395172401]
我々は、Reddit上で58,000のコメントを寄せ集め、感情分析手法を評価した。
我々の研究は、様々なモデルの配列を評価することによって、範囲を広げる。
以上の結果から,RoBERTaモデルはベースラインモデルよりも一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-27T03:59:28Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - SeeBel: Seeing is Believing [0.9790236766474201]
本稿では,全画像のセグメンテーションにおけるデータセット統計とAI性能を比較するための3つの可視化手法を提案する。
我々のプロジェクトは、画像の注意重みを可視化することで、セグメンテーションのための訓練されたAIモデルの解釈可能性をさらに高めようとしている。
我々は,コンピュータビジョンとAI領域における可視化ツールの有効性を検討するために,実際のユーザを対象に調査を行うことを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:11:00Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Inter-model Interpretability: Self-supervised Models as a Case Study [0.2578242050187029]
テキスト・インター・モデル・インタプリタビリティを導入するためのDissectと呼ばれる最近の解釈可能性技術を構築した。
我々は、学習概念の観点から、モデル間の近さを明らかにする学習概念埋め込み空間に、トップパフォーマンスの自己教師型モデル13を投影する。
この実験により、モデルを3つのカテゴリに分類し、異なるタスクが必要とする視覚概念の種類を初めて明らかにしました。
論文 参考訳(メタデータ) (2022-07-24T22:50:18Z) - OODformer: Out-Of-Distribution Detection Transformer [15.17006322500865]
現実世界の安全クリティカルなアプリケーションでは、新しいデータポイントがOODであるかどうかを認識することが重要です。
本稿では,OODformer というファースト・オブ・ザ・キンドな OOD 検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-07-19T15:46:38Z) - Image-Based Sorghum Head Counting When You Only Look Once [16.43087660376697]
デジタル農業の最近のトレンドは、作物の品質評価と収量推定のために人工知能にシフトしている。
本研究では,パラメータ調整された単発物体検出アルゴリズムを用いて,空中ドローン画像からソルガム頭部を識別・カウントする方法について述べる。
論文 参考訳(メタデータ) (2020-09-24T19:50:08Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。