GTransPDM: A Graph-embedded Transformer with Positional Decoupling for Pedestrian Crossing Intention Prediction
- URL: http://arxiv.org/abs/2409.20223v1
- Date: Mon, 30 Sep 2024 12:02:17 GMT
- Title: GTransPDM: A Graph-embedded Transformer with Positional Decoupling for Pedestrian Crossing Intention Prediction
- Authors: Chen Xie, Ciyun Lin, Xiaoyu Zheng, Bowen Gong, Dayong Wu, Antonio M. López,
- Abstract summary: GTransPDM was developed for pedestrian crossing intention prediction by leveraging multi-modal features.
It achieves 92% accuracy on the PIE dataset and 87% accuracy on the JAAD dataset, with a processing speed of 0.05ms.
- Score: 6.327758022051579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting pedestrian crossing behavioral intention is crucial for autonomous vehicles driving safety. Nonetheless, challenges emerge when using promising images or environmental context masks to extract various factors for time-series network modeling, causing pre-processing errors or a loss in efficiency. Typically, pedestrian positions captured by onboard cameras are often distorted and do not accurately reflect their actual movements. To address these issues, GTransPDM -- a Graph-embedded Transformer with a Position Decoupling Module -- was developed for pedestrian crossing intention prediction by leveraging multi-modal features. First, a positional decoupling module was proposed to decompose the pedestrian lateral movement and simulate depth variations in the image view. Then, a graph-embedded Transformer was designed to capture the spatial-temporal dynamics of human pose skeletons, integrating essential factors such as position, skeleton, and ego-vehicle motion. Experimental results indicate that the proposed method achieves 92% accuracy on the PIE dataset and 87% accuracy on the JAAD dataset, with a processing speed of 0.05ms. It outperforms the state-of-the-art in comparison.
Related papers
- AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Transformer-based Fusion of 2D-pose and Spatio-temporal Embeddings for
Distracted Driver Action Recognition [8.841708075914353]
Temporal localization of driving actions over time is important for advanced driver-assistance systems and naturalistic driving studies.
We aim to improve the temporal localization and classification accuracy performance by adapting video action recognition and 2D human-based estimation networks to one model.
The model performs well on the A2 test set the 2023 NVIDIA AI City Challenge for naturalistic driving action recognition.
arXiv Detail & Related papers (2024-03-11T10:26:38Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - Homography Decomposition Networks for Planar Object Tracking [11.558401177707312]
Planar object tracking plays an important role in AI applications, such as robotics, visual servoing, and visual SLAM.
We propose a novel Homography Decomposition Networks(HDN) approach that drastically reduces and stabilizes the condition number by decomposing the homography transformation into two groups.
arXiv Detail & Related papers (2021-12-15T06:13:32Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - TransCamP: Graph Transformer for 6-DoF Camera Pose Estimation [77.09542018140823]
We propose a neural network approach with a graph transformer backbone, namely TransCamP, to address the camera relocalization problem.
TransCamP effectively fuses the image features, camera pose information and inter-frame relative camera motions into encoded graph attributes.
arXiv Detail & Related papers (2021-05-28T19:08:43Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.