論文の概要: Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations
- arxiv url: http://arxiv.org/abs/2409.20469v1
- Date: Mon, 30 Sep 2024 16:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 06:50:32.271634
- Title: Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations
- Title(参考訳): キーポイントとポース変動の漸進的統合のための連続的人文推定
- Authors: Muhammad Saif Ullah Khan, Muhammad Ahmed Ullah Khan, Muhammad Zeshan Afzal, Didier Stricker,
- Abstract要約: 本稿では,連続的な学習課題として,データセット間のポーズ推定を再構成する。
我々は、破滅的な忘れを緩和するための確立された正規化に基づく手法に対して、この定式化をベンチマークする。
提案手法は,既存の正規化に基づく継続学習戦略よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 12.042768320132694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reformulates cross-dataset human pose estimation as a continual learning task, aiming to integrate new keypoints and pose variations into existing models without losing accuracy on previously learned datasets. We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting, including EWC, LFL, and LwF. Moreover, we propose a novel regularization method called Importance-Weighted Distillation (IWD), which enhances conventional LwF by introducing a layer-wise distillation penalty and dynamic temperature adjustment based on layer importance for previously learned knowledge. This allows for a controlled adaptation to new tasks that respects the stability-plasticity balance critical in continual learning. Through extensive experiments across three datasets, we demonstrate that our approach outperforms existing regularization-based continual learning strategies. IWD shows an average improvement of 3.60\% over the state-of-the-art LwF method. The results highlight the potential of our method to serve as a robust framework for real-world applications where models must evolve with new data without forgetting past knowledge.
- Abstract(参考訳): 本稿では,従来の学習データセットの精度を損なうことなく,新たなキーポイントを統合し,既存モデルにバリエーションを付加することを目的とした,連続的な学習課題として,データセット間のポーズ推定を再構築する。
本定式化は,EWC,LFL,LwFなどの破滅的忘れを緩和するための確立された正規化に基づく手法と比較した。
また, 従来のLwFを付加し, レイヤーワイド蒸留法と動的温度調整法を導入することで, 従来のLwFを向上するImportance-Weighted Distillation (IWD) という新しい正則化手法を提案する。
これにより、継続的な学習において重要な安定性と塑性のバランスを尊重する新しいタスクへの制御された適応が可能になる。
3つのデータセットにわたる広範な実験を通して、我々のアプローチが既存の正規化に基づく継続的な学習戦略より優れていることを実証する。
IWDは最先端のLwF法よりも平均3.60\%改善している。
その結果、過去の知識を忘れずにモデルが新しいデータで進化しなければならない現実世界のアプリケーションのための堅牢なフレームワークとして機能する手法の可能性を強調した。
関連論文リスト
- Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning [15.475427498268393]
TAALM(Train-Attention-Augmented Language Model)は,トークンに対する重み付けを動的に予測・適用することにより,学習効率を向上させる。
我々は,TAALMがベースライン上での最先端性能を証明し,従来のCKLアプローチと統合した場合に相乗的互換性を示すことを示す。
論文 参考訳(メタデータ) (2024-07-24T01:04:34Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
本報告では, オフラヤの非効率な取扱いから, この不整合が生じることを解析する。
本稿では,ロバスト連続学習(RCL)手法を提案する。
提案手法は, 堅牢性を効果的に維持し, 新たなSOTA(State-of-the-art)結果を得る。
論文 参考訳(メタデータ) (2024-05-27T11:21:26Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - New metrics for analyzing continual learners [27.868967961503962]
継続学習(CL)は、標準的な学習アルゴリズムに課題をもたらす。
この安定性・塑性ジレンマはCLの中心であり、安定性と塑性を個別に適切に測定するために複数の測定基準が提案されている。
課題の難しさを考慮に入れた新しい指標を提案する。
論文 参考訳(メタデータ) (2023-09-01T13:53:33Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
クラスインクリメンタルラーニングは、この課題を克服するために、可塑性と安定性のバランスをとる統合モデルを作成することを目的としている。
本稿では,従来の知識を維持しつつ,新たな知識を受け入れる選択正規化手法を提案する。
CIFAR-100, ImageNet-Subset, ImageNet-Full を用いて提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2023-05-09T05:04:35Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Online Continual Learning via the Meta-learning Update with Multi-scale
Knowledge Distillation and Data Augmentation [4.109784267309124]
継続的な学習は、一連のタスクから現在のタスクを迅速かつ継続的に学習することを目的としている。
この手法の一般的な制限は、前のタスクと現在のタスクの間のデータ不均衡である。
マルチスケール知識蒸留とデータ拡張によるメタラーニング更新という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-12T10:03:53Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。