Ensemble WSINDy for Data Driven Discovery of Governing Equations from Laser-based Full-field Measurements
- URL: http://arxiv.org/abs/2409.20510v1
- Date: Mon, 30 Sep 2024 17:12:19 GMT
- Title: Ensemble WSINDy for Data Driven Discovery of Governing Equations from Laser-based Full-field Measurements
- Authors: Abigail C. Schmid, Alireza Doostan, Fatemeh Pourahmadian,
- Abstract summary: This work leverages laser vibrometry and the weak form of the weak identification of nonlinear dynamics (WSINDy) for partial differential equations.
Two beam-like specimens, one aluminum and one IDOX/Estane composite, are subjected to wave shear excitation in the low frequency regime.
The WSINDy for PDEs algorithm is applied to the resulting-temporal data to discover the effective dynamics of the specimens.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work leverages laser vibrometry and the weak form of the sparse identification of nonlinear dynamics (WSINDy) for partial differential equations to learn macroscale governing equations from full-field experimental data. In the experiments, two beam-like specimens, one aluminum and one IDOX/Estane composite, are subjected to shear wave excitation in the low frequency regime and the response is measured in the form of particle velocity on the specimen surface. The WSINDy for PDEs algorithm is applied to the resulting spatio-temporal data to discover the effective dynamics of the specimens from a family of potential PDEs. The discovered PDE is of the recognizable Euler-Bernoulli beam model form, from which the Young's modulus for the two materials are estimated. An ensemble version of the WSINDy algorithm is also used which results in information about the uncertainty in the PDE coefficients and Young's moduli. The discovered PDEs are also simulated with a finite element code to compare against the experimental data with reasonable accuracy. Using full-field experimental data and WSINDy together is a powerful non-destructive approach for learning unknown governing equations and gaining insights about mechanical systems in the dynamic regime.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
This study proposes a framework to robustly uncover open-form partial differential equations (PDEs) from limited and noisy data.
A neural network-based predictive model fits the system response and serves as the reward evaluator for the generated PDEs.
Numerical experiments demonstrate our framework's capability to uncover governing equations from nonlinear dynamic systems with limited and highly noisy data.
arXiv Detail & Related papers (2023-09-14T12:34:42Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Data-driven Identification of 2D Partial Differential Equations using
extracted physical features [0.0]
We propose an ML method to discover the terms involved in the equation from two-dimensional data.
This idea provides us with the ability to discover 2D equations with time derivatives of different orders, and also to identify new underlying physics on which the model has not been trained.
The results indicate robustness of the features extracted based on prior knowledge in comparison to automatically detected features by a Three-dimensional Convolutional Neural Network (3D CNN) given the same amounts of data.
arXiv Detail & Related papers (2020-10-20T21:06:50Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
arXiv Detail & Related papers (2020-05-16T09:09:57Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
This work introduces a physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy representation data.
The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems.
The resulting computational framework shows the potential for closed-form model discovery in practical applications.
arXiv Detail & Related papers (2020-05-05T22:13:22Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
Learning nonlinear dynamics from aggregate data is a challenging problem because the full trajectory of each individual is not available.
We propose a novel method using the weak form of Fokker Planck Equation (FPE) to describe the density evolution of data in a sampled form.
In such a sample-based framework we are able to learn the nonlinear dynamics from aggregate data without explicitly solving the partial differential equation (PDE) FPE.
arXiv Detail & Related papers (2020-02-10T03:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.