Automated Disease Diagnosis in Pumpkin Plants Using Advanced CNN Models
- URL: http://arxiv.org/abs/2410.00062v1
- Date: Sun, 29 Sep 2024 14:31:23 GMT
- Title: Automated Disease Diagnosis in Pumpkin Plants Using Advanced CNN Models
- Authors: Aymane Khaldi, El Mostafa Kalmoun,
- Abstract summary: Pumpkin is a vital crop cultivated globally, and its productivity is crucial for food security, especially in developing regions.
Recent advancements in machine learning and deep learning offer promising solutions for automating and improving the accuracy of plant disease detection.
This paper presents a comprehensive analysis of state-of-the-art Convolutional Neural Network (CNN) models for classifying diseases in pumpkin plant leaves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pumpkin is a vital crop cultivated globally, and its productivity is crucial for food security, especially in developing regions. Accurate and timely detection of pumpkin leaf diseases is essential to mitigate significant losses in yield and quality. Traditional methods of disease identification rely heavily on subjective judgment by farmers or experts, which can lead to inefficiencies and missed opportunities for intervention. Recent advancements in machine learning and deep learning offer promising solutions for automating and improving the accuracy of plant disease detection. This paper presents a comprehensive analysis of state-of-the-art Convolutional Neural Network (CNN) models for classifying diseases in pumpkin plant leaves. Using a publicly available dataset of 2000 highresolution images, we evaluate the performance of several CNN architectures, including ResNet, DenseNet, and EfficientNet, in recognizing five classes: healthy leaves and four common diseases downy mildew, powdery mildew, mosaic disease, and bacterial leaf spot. We fine-tuned these pretrained models and conducted hyperparameter optimization experiments. ResNet-34, DenseNet-121, and EfficientNet-B7 were identified as top-performing models, each excelling in different classes of leaf diseases. Our analysis revealed DenseNet-121 as the optimal model when considering both accuracy and computational complexity achieving an overall accuracy of 86%. This study underscores the potential of CNNs in automating disease diagnosis for pumpkin plants, offering valuable insights that can contribute to enhancing agricultural productivity and minimizing economic losses.
Related papers
- A Data-Efficient Pan-Tumor Foundation Model for Oncology CT Interpretation [17.993838581176902]
PASTA is a pan-tumor CT foundation model that achieves state-of-the-art performance on 45 of 46 representative oncology tasks.
PASTA-Gen produces a comprehensive dataset of 30,000 CT scans with pixel-level annotated lesions and paired structured reports.
arXiv Detail & Related papers (2025-02-10T05:45:03Z) - Explainable AI-Enhanced Deep Learning for Pumpkin Leaf Disease Detection: A Comparative Analysis of CNN Architectures [1.472830326343432]
This study employs on the "Pumpkin Leaf Disease dataset", that comprises of 2000 high-resolution images separated into five categories.
The dataset was rigorously assembled from several agricultural fields to ensure a strong representation for model training.
We explored many proficient deep learning architectures, including DenseNet201, DenseNet121, DenseNet169, Xception, ResNet50, ResNet101 and InceptionResNetV2, and observed that ResNet50 performed most effectively, with an accuracy of 90.5% and comparable precision, recall, and F1-Score.
arXiv Detail & Related papers (2025-01-09T18:59:35Z) - Improved Cotton Leaf Disease Classification Using Parameter-Efficient Deep Learning Framework [0.0]
Cotton crops, often called "white gold," face significant production challenges.
Deep learning and machine learning techniques have been explored to address this challenge.
We propose an innovative deep learning framework integrating a subset of trainable layers from MobileNet.
arXiv Detail & Related papers (2024-12-23T14:01:10Z) - PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - AgEval: A Benchmark for Zero-Shot and Few-Shot Plant Stress Phenotyping with Multimodal LLMs [19.7240633020344]
AgEval is a benchmark comprising 12 diverse plant stress phenotyping tasks.
Our study assesses zero-shot and few-shot in-context learning performance of state-of-the-art models.
arXiv Detail & Related papers (2024-07-29T00:39:51Z) - Early Detection of Coffee Leaf Rust Through Convolutional Neural Networks Trained on Low-Resolution Images [27.195033353775006]
Coffee leaf rust, a foliar disease caused by the fungus Hemileia vastatrix, poses a major threat to coffee production.
Deep learning models for enhancing early disease detection require extensive processing power and large amounts of data.
We propose a preprocessing technique that involves convolving training images with a high-pass filter to enhance lesion-leaf contrast.
arXiv Detail & Related papers (2024-07-20T03:24:25Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Performance Analysis of Optimizers for Plant Disease Classification with
Convolutional Neural Networks [0.0]
Crop failure owing to pests & diseases are inherent within Indian agriculture, leading to annual losses of 15 to 25% of productivity.
This research uses Convolutional Networks for classification of farm or plant leaf samples of 3 crops into 15 classes.
arXiv Detail & Related papers (2020-11-08T19:03:02Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.