Smart Contract Vulnerability Detection based on Static Analysis and Multi-Objective Search
- URL: http://arxiv.org/abs/2410.00282v1
- Date: Mon, 30 Sep 2024 23:28:17 GMT
- Title: Smart Contract Vulnerability Detection based on Static Analysis and Multi-Objective Search
- Authors: Dongcheng Li, W. Eric Wong, Xiaodan Wang, Sean Pan, Liang-Seng Koh,
- Abstract summary: This paper introduces a method for detecting vulnerabilities in smart contracts using static analysis and a multi-objective optimization algorithm.
We focus on four types of vulnerabilities: reentrancy, call stack overflow, integer overflow, and timestamp dependencies.
We validate our approach using an open-source dataset collected from Etherscan, containing 6,693 smart contracts.
- Score: 3.297959314391795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a method for detecting vulnerabilities in smart contracts using static analysis and a multi-objective optimization algorithm. We focus on four types of vulnerabilities: reentrancy, call stack overflow, integer overflow, and timestamp dependencies. Initially, smart contracts are compiled into an abstract syntax tree to analyze relationships between contracts and functions, including calls, inheritance, and data flow. These analyses are transformed into static evaluations and intermediate representations that reveal internal relations. Based on these representations, we examine contract's functions, variables, and data dependencies to detect the specified vulnerabilities. To enhance detection accuracy and coverage, we apply a multi-objective optimization algorithm to the static analysis process. This involves assigning initial numeric values to input data and monitoring changes in statement coverage and detection accuracy. Using coverage and accuracy as fitness values, we calculate Pareto front and crowding distance values to select the best individuals for the new parent population, iterating until optimization criteria are met. We validate our approach using an open-source dataset collected from Etherscan, containing 6,693 smart contracts. Experimental results show that our method outperforms state-of-the-art tools in terms of coverage, accuracy, efficiency, and effectiveness in detecting the targeted vulnerabilities.
Related papers
- CrossInspector: A Static Analysis Approach for Cross-Contract Vulnerability Detection [3.6320095921016264]
CrossInspector is a novel framework for detecting cross-contract vulnerabilities at the bytecode level through static analysis.
We ran CrossInspector on a randomly selected set of 300 real-world smart contracts and identified 11 cross-contract vulnerabilities that were missed by prior tools.
arXiv Detail & Related papers (2024-08-27T00:53:14Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise.
We propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations.
BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models.
arXiv Detail & Related papers (2024-07-10T18:00:54Z) - Supporting Error Chains in Static Analysis for Precise Evaluation
Results and Enhanced Usability [2.8557828838739527]
Static analyses tend to report where a vulnerability manifests rather than the fix location.
This can cause presumed false positives or imprecise results.
We designed an adaption of an existing static analysis algorithm that can distinguish between a manifestation and fix location.
arXiv Detail & Related papers (2024-03-12T16:46:29Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
We present a systematic review of the literature on smart contract vulnerabilities and methods.
Specifically, we enumerate and classify smart contract vulnerabilities and methods by the properties they address.
Several patterns about the strengths of different methods emerge through this classification process.
arXiv Detail & Related papers (2023-01-15T12:36:56Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Exploiting Multi-Object Relationships for Detecting Adversarial Attacks
in Complex Scenes [51.65308857232767]
Vision systems that deploy Deep Neural Networks (DNNs) are known to be vulnerable to adversarial examples.
Recent research has shown that checking the intrinsic consistencies in the input data is a promising way to detect adversarial attacks.
We develop a novel approach to perform context consistency checks using language models.
arXiv Detail & Related papers (2021-08-19T00:52:10Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
This paper aims to assess the feasibility of using purely static information (e.g., abstract syntax tree or AST) of applications to predict performance change based on the change in code structure.
Our evaluations of several deep embedding learning methods demonstrate that tree-based Long Short-Term Memory (LSTM) models can leverage the hierarchical structure of source-code to discover latent representations and achieve up to 84% (individual problem) and 73% (combined dataset with multiple of problems) accuracy in predicting the change in performance.
arXiv Detail & Related papers (2021-02-12T16:59:12Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.