論文の概要: ROK Defense M&S in the Age of Hyperscale AI: Concepts, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2410.00367v1
- Date: Tue, 1 Oct 2024 03:39:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 06:06:43.695535
- Title: ROK Defense M&S in the Age of Hyperscale AI: Concepts, Challenges, and Future Directions
- Title(参考訳): ハイパースケールAI時代のROK防衛M&S : 概念,課題,今後の方向性
- Authors: Youngjoon Lee, Taehyun Park, Yeongjoon Kang, Jonghoe Kim, Joonhyuk Kang,
- Abstract要約: 国家防衛モデリングとシミュレーション(M&S)へのハイパースケールAIの統合は、戦略的および運用能力の強化に不可欠である。
我々は、超大規模AIが、前例のない精度、速度、複雑なシナリオをシミュレートする能力を提供することで、防衛M&Sに革命をもたらす方法を探求する。
大韓民国は防衛能力を強化し、近代戦の脅威に先んじることができる。
- 参考スコア(独自算出の注目度): 3.0175628677371935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating hyperscale AI into national defense modeling and simulation (M&S) is crucial for enhancing strategic and operational capabilities. We explore how hyperscale AI can revolutionize defense M\&S by providing unprecedented accuracy, speed, and the ability to simulate complex scenarios. Countries such as the United States and China are at the forefront of adopting these technologies and are experiencing varying degrees of success. Maximizing the potential of hyperscale AI necessitates addressing critical challenges, such as closed networks, long-tail data, complex decision-making, and a shortage of experts. Future directions emphasize the adoption of domestic foundation models, the investment in various GPUs / NPUs, the utilization of big tech services, and the use of open source software. These initiatives will enhance national security, maintain competitive advantages, and promote broader technological and economic progress. With this blueprint, the Republic of Korea can strengthen its defense capabilities and stay ahead of the emerging threats of modern warfare.
- Abstract(参考訳): 国家防衛モデリングとシミュレーション(M&S)へのハイパースケールAIの統合は、戦略的および運用能力の強化に不可欠である。
我々は、超大規模AIが、前例のない精度、速度、複雑なシナリオをシミュレートする能力を提供することで、防衛M\&Sに革命をもたらす方法を探求する。
米国や中国のような国は、これらの技術を採用する最前線にあり、様々な成功の度合いを経験している。
ハイパースケールAIの可能性の最大化は、クローズドネットワーク、ロングテールデータ、複雑な意思決定、専門家不足といった重要な課題に対処する必要がある。
今後の方向性は、国内ファウンデーションモデルの採用、さまざまなGPU/NPUへの投資、ビッグデータサービスの利用、オープンソースソフトウェアの利用などを強調している。
これらのイニシアチブは、国家安全保障を強化し、競争上の優位性を維持し、より広範な技術的・経済的進歩を促進する。
この青写真により、大韓民国は防衛能力を強化し、近代戦争における新たな脅威に先んじることができる。
関連論文リスト
- Standardization Trends on Safety and Trustworthiness Technology for Advanced AI [0.0]
大規模言語モデルと基礎モデルに基づく最近のAI技術は、人工知能に近づいたり、超えたりしている。
これらの進歩は、高度なAIの安全性と信頼性に関する懸念を引き起こしている。
AIの安全性と信頼性を確保するため、国際的に合意された標準を開発するための努力が実施されている。
論文 参考訳(メタデータ) (2024-10-29T15:50:24Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、計算要求がモデルの性能よりも早く増加し、不合理な経済要求と不均等な環境フットプリントにつながるため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - AI-Powered Autonomous Weapons Risk Geopolitical Instability and Threaten AI Research [6.96356867602455]
自律兵器システム(AWS)開発における機械学習の最近の採用は、地政学的な安定性とAI研究におけるアイデアの自由交換に深刻なリスクをもたらす、と我々は主張する。
MLはすでに、多くの戦場で、人間の兵士のためのAWSの代替を可能にしている。
さらに、AWSの軍事的価値は、AIによる軍備競争の投機と、AI研究に対する国家安全保障上の制限の誤った適用を提起する。
論文 参考訳(メタデータ) (2024-05-03T05:19:45Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - Killer Apps: Low-Speed, Large-Scale AI Weapons [2.2899177316144943]
人工知能(AI)と機械学習(ML)の進歩は、戦争と安全保障における新たな課題と機会を提示する。
本稿では,AI兵器の概念,その展開,検出,潜在的な対策について検討する。
論文 参考訳(メタデータ) (2024-01-14T12:09:40Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Future Computer Systems and Networking Research in the Netherlands: A
Manifesto [137.47124933818066]
我々はICTの重要部分としてCompSysに注目している。
オランダ経済のトップセクター、国家研究アジェンダの各ルート、国連持続可能な開発目標の各ルートは、コンプシーズの進歩なしには対処できない課題を提起する。
論文 参考訳(メタデータ) (2022-05-26T11:02:29Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。