Unveiling the Inflexibility of Adaptive Embedding in Traffic Forecasting
- URL: http://arxiv.org/abs/2411.11448v1
- Date: Mon, 18 Nov 2024 10:30:34 GMT
- Title: Unveiling the Inflexibility of Adaptive Embedding in Traffic Forecasting
- Authors: Hongjun Wang, Jiyuan Chen, Lingyu Zhang, Renhe Jiang, Xuan Song,
- Abstract summary: Rapid urbanization has led to dynamic shifts in traffic patterns and travel demand, posing major challenges for accurate long-term traffic prediction.
We evaluate state-of-the-art models on an extended traffic benchmark and observe substantial performance degradation in existing ST-GNNs.
We propose a Principal Component Analysis (PCA) embedding approach that enables models to adapt to new scenarios without retraining.
- Score: 9.818230821091184
- License:
- Abstract: Spatiotemporal Graph Neural Networks (ST-GNNs) and Transformers have shown significant promise in traffic forecasting by effectively modeling temporal and spatial correlations. However, rapid urbanization in recent years has led to dynamic shifts in traffic patterns and travel demand, posing major challenges for accurate long-term traffic prediction. The generalization capability of ST-GNNs in extended temporal scenarios and cross-city applications remains largely unexplored. In this study, we evaluate state-of-the-art models on an extended traffic benchmark and observe substantial performance degradation in existing ST-GNNs over time, which we attribute to their limited inductive capabilities. Our analysis reveals that this degradation stems from an inability to adapt to evolving spatial relationships within urban environments. To address this limitation, we reconsider the design of adaptive embeddings and propose a Principal Component Analysis (PCA) embedding approach that enables models to adapt to new scenarios without retraining. We incorporate PCA embeddings into existing ST-GNN and Transformer architectures, achieving marked improvements in performance. Notably, PCA embeddings allow for flexibility in graph structures between training and testing, enabling models trained on one city to perform zero-shot predictions on other cities. This adaptability demonstrates the potential of PCA embeddings in enhancing the robustness and generalization of spatiotemporal models.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version [24.544665297938437]
Topological Evolution-aware Framework (TEAM) for traffic forecasting incorporates convolution and attention.
TEAM is capable of much lower re-training costs than existing methods are without jeopardizing forecasting accuracy.
arXiv Detail & Related papers (2024-10-24T22:50:21Z) - DST-TransitNet: A Dynamic Spatio-Temporal Deep Learning Model for Scalable and Efficient Network-Wide Prediction of Station-Level Transit Ridership [12.6020349733674]
This paper introduces DST-TransitNet, a hybrid Deep Learning model for system-wide ridership prediction.
It is tested on Bogota's BRT system data, with three distinct social scenarios.
It outperforms state-of-the-art models in precision, efficiency and robustness.
arXiv Detail & Related papers (2024-10-19T06:59:39Z) - STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
Traffic is a cornerstone of smart city management enabling efficient allocation and transportation planning.
Deep learning, with its ability to capture complex nonlinear patterns in data, has emerged as a powerful tool for traffic forecasting.
graph neural networks (GCNs) and transformer-based models have shown promise, but their computational demands often hinder their application to realworld networks.
We propose a noveltemporal graph transformer (STG) architecture, enabling efficient modeling of both global and local traffic patterns while maintaining a manageable computational footprint.
arXiv Detail & Related papers (2024-10-01T04:15:48Z) - Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
Current research on Spatio-Temporal Graph Neural Networks (STGNNs) often prioritizes complex designs, leading to computational burdens with only minor enhancements in accuracy.
We propose ST-MLP, a concise cascaded temporal-temporal model solely based on Multi-Layer Perceptron (MLP) modules and linear layers.
Empirical results demonstrate that ST-MLP outperforms state-of-the-art STGNNs and other models in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2023-08-14T23:34:59Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.