Seamless Augmented Reality Integration in Arthroscopy: A Pipeline for Articular Reconstruction and Guidance
- URL: http://arxiv.org/abs/2410.00386v1
- Date: Tue, 1 Oct 2024 04:15:49 GMT
- Title: Seamless Augmented Reality Integration in Arthroscopy: A Pipeline for Articular Reconstruction and Guidance
- Authors: Hongchao Shu, Mingxu Liu, Lalithkumar Seenivasan, Suxi Gu, Ping-Cheng Ku, Jonathan Knopf, Russell Taylor, Mathias Unberath,
- Abstract summary: arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems.
The arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures.
We present a robust pipeline that incorporates simultaneous localization and mapping, depth estimation, and 3D Gaussian splatting.
Our solution offers AR assistance for articular notch measurement and annotation anchoring in a human-in-the-loop manner.
- Score: 4.8046407905667206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures. Aiming at enhancing intraoperative awareness, we present a robust pipeline that incorporates simultaneous localization and mapping, depth estimation, and 3D Gaussian splatting to realistically reconstruct intra-articular structures solely based on monocular arthroscope video. Extending 3D reconstruction to Augmented Reality (AR) applications, our solution offers AR assistance for articular notch measurement and annotation anchoring in a human-in-the-loop manner. Compared to traditional Structure-from-Motion and Neural Radiance Field-based methods, our pipeline achieves dense 3D reconstruction and competitive rendering fidelity with explicit 3D representation in 7 minutes on average. When evaluated on four phantom datasets, our method achieves RMSE = 2.21mm reconstruction error, PSNR = 32.86 and SSIM = 0.89 on average. Because our pipeline enables AR reconstruction and guidance directly from monocular arthroscopy without any additional data and/or hardware, our solution may hold the potential for enhancing intraoperative awareness and facilitating surgical precision in arthroscopy. Our AR measurement tool achieves accuracy within 1.59 +/- 1.81mm and the AR annotation tool achieves a mIoU of 0.721.
Related papers
- 3D Freehand Ultrasound using Visual Inertial and Deep Inertial Odometry for Measuring Patellar Tracking [4.252549987351643]
Patellofemoral joint (PFJ) issues affect one in four people, with 20% experiencing chronic knee pain despite treatment.
Traditional imaging methods like CT and MRI face challenges, including cost and metal artefacts.
A new system to monitor joint motion could significantly improve understanding of PFJ dynamics.
arXiv Detail & Related papers (2024-04-24T12:52:43Z) - EndoGSLAM: Real-Time Dense Reconstruction and Tracking in Endoscopic Surgeries using Gaussian Splatting [53.38166294158047]
EndoGSLAM is an efficient approach for endoscopic surgeries, which integrates streamlined representation and differentiable Gaussianization.
Experiments show that EndoGSLAM achieves a better trade-off between intraoperative availability and reconstruction quality than traditional or neural SLAM approaches.
arXiv Detail & Related papers (2024-03-22T11:27:43Z) - Monocular Microscope to CT Registration using Pose Estimation of the
Incus for Augmented Reality Cochlear Implant Surgery [3.8909273404657556]
We develop a method that permits direct 2D-to-3D registration of the view microscope video to the pre-operative Computed Tomography (CT) scan without the need for external tracking equipment.
Our results demonstrate the accuracy with an average rotation error of less than 25 degrees and a translation error of less than 2 mm, 3 mm, and 0.55% for the x, y, and z axes, respectively.
arXiv Detail & Related papers (2024-03-12T00:26:08Z) - Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data [9.21828361691977]
This study tackles key obstacles in adopting surgical navigation in orthopedic surgeries.
It shows an approach for generating 3D anatomical models of the spine from only a few fluoroscopic images.
It achieved an 84% F1 score, matching the accuracy of our previous synthetic data-based research.
arXiv Detail & Related papers (2024-01-29T10:22:45Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
We perform a quantitative analysis of a self-supervised approach for sinus reconstruction using endoscopic sequences and optical tracking.
Our results show that the generated reconstructions are in high agreement with the anatomy, yielding an average point-to-mesh error of 0.91 mm.
We identify that pose and depth estimation inaccuracies contribute equally to this error and that locally consistent sequences with shorter trajectories generate more accurate reconstructions.
arXiv Detail & Related papers (2023-10-22T17:11:40Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Automatic registration with continuous pose updates for marker-less
surgical navigation in spine surgery [52.63271687382495]
We present an approach that automatically solves the registration problem for lumbar spinal fusion surgery in a radiation-free manner.
A deep neural network was trained to segment the lumbar spine and simultaneously predict its orientation, yielding an initial pose for preoperative models.
An intuitive surgical guidance is provided thanks to the integration into an augmented reality based navigation system.
arXiv Detail & Related papers (2023-08-05T16:26:41Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z) - Towards Augmented Reality-based Suturing in Monocular Laparoscopic
Training [0.5707453684578819]
The paper proposes an Augmented Reality environment with quantitative and qualitative visual representations to enhance laparoscopic training outcomes performed on a silicone pad.
This is enabled by a multi-task supervised deep neural network which performs multi-class segmentation and depth map prediction.
The network achieves a dice score of 0.67 for surgical needle segmentation, 0.81 for needle holder instrument segmentation and a mean absolute error of 6.5 mm for depth estimation.
arXiv Detail & Related papers (2020-01-19T19:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.