Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing
- URL: http://arxiv.org/abs/2410.00708v1
- Date: Tue, 1 Oct 2024 13:59:59 GMT
- Title: Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing
- Authors: Sparsh Mittal, Yash Chand, Neel Kanth Kundu,
- Abstract summary: This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator ( RSSI) values.
We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN.
We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method.
- Score: 10.93754409707771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator (RSSI) values. We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN. We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method. Our results show that the proposed HQNN performs better than the quantum fingerprinting algorithm since the HQNN has trainable parameters in the quantum circuits, whereas the quantum fingerprinting algorithm uses a fixed quantum circuit to calculate the similarity between the test data point and the fingerprint dataset. Unlike prior works, we also test the performance of the HQNN and quantum fingerprint algorithm on a real IBM quantum computer using cloud quantum computing services. Therefore, this paper examines the performance of the HQNN on noisy intermediate scale (NISQ) quantum devices using real-world RSSI localization datasets. The novelty of our approach lies in the use of simple feature maps and ansatz with fewer neurons, alongside testing on actual quantum hardware using real-world data, demonstrating practical applicability in real-world scenarios.
Related papers
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
Quantum convolutional neural networks (QCNNs) represent a promising approach in quantum machine learning.
We propose a QCNN architecture capable of handling arbitrary input data dimensions while optimizing the allocation of quantum resources.
arXiv Detail & Related papers (2024-03-28T02:25:12Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities.
In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework.
We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time.
arXiv Detail & Related papers (2024-02-16T11:44:25Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.