Orbital atomic sensor for gravitational waves
- URL: http://arxiv.org/abs/2410.00803v1
- Date: Tue, 1 Oct 2024 15:48:34 GMT
- Title: Orbital atomic sensor for gravitational waves
- Authors: Xinyang Yu, W. Vincent Liu, Xiaopeng Li,
- Abstract summary: We introduce an orbital atomic sensor using a squeezed $p$-orbital Bose-Einstein condensate in an ultracold atomic optical lattice to project the gravitational wave signal received by a usual LIGO setup into a phase-sensitive entangled state.
This advance enables about three-order-of-magnitude increase in detection volume, significantly advancing the potential of using gravitational waves to detect dark matter and black holes.
- Score: 4.706110280356947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gravitational wave science transforms research beyond general relativity and gravity. The signals detected not only reveal the nature of cataclysmic events and exotic objects in galaxies, but also test the models for the equation of state and color superconducting vortex alignment in neutron stars, as well as for the distribution of cosmological dark matter and their characteristic coupling with ordinary matter as new physics beyond the standard model of elementary particles. Measurement sensitivity is crucial to advance along those lines. One of the rapidly developing frontiers is quantum enhanced interferometry applied into the gravitational wave detectors. Progress achieved by LIGO, Virgo and KAGRA detectors brings exciting prospects. Here, we introduce an orbital atomic sensor using a squeezed $p$-orbital Bose-Einstein condensate in an ultracold atomic optical lattice to project the gravitational wave signal received by a usual LIGO setup into a phase-sensitive entangled state. Simulation data show the detection sensitivity improves over the quantum noise of LIGO by approximately one order of magnitude in key frequency ranges. This advance enables about three-order-of-magnitude increase in detection volume, significantly advancing the potential of using gravitational waves to detect dark matter and black holes.
Related papers
- A Rotating-Wave Comagnetometer Detector for Particle Physics [1.1510009152620668]
We develop a technique to suppress magnetic noise at tunable frequencies while maintaining high sensitivity to target signals.
This work paves the way for a new class of tabletop experiments aimed at searching for new physics.
arXiv Detail & Related papers (2024-10-21T18:00:01Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Single-Photon Signal Sideband Detection for High-Power Michelson
Interferometers [0.0]
The Michelson interferometer is a cornerstone of experimental physics.
Interferometer precision provides a unique view of the fundamental medium of matter and energy.
arXiv Detail & Related papers (2022-11-08T05:27:15Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Boosting the sensitivity of high frequency gravitational wave detectors
by PT-symmetry [9.717134926446956]
Current laser interferometer gravitational wave detectors have limited signal response at the kilo-Hertz band.
This work proposes an alternative protocol for boosting the sensitivity of the gravitational wave detectors at high frequency.
With the auxiliary quantum amplifier, this design has the feature of Parity-Time (PT) symmetry so that the detection band will be significantly broadened.
arXiv Detail & Related papers (2022-06-24T09:18:39Z) - Snowmass 2021: Quantum Sensors for HEP Science -- Interferometers,
Mechanics, Traps, and Clocks [0.0]
We focus on sensing with atomic interferometers, mechanical devices read out with optical or microwave fields, and precision spectroscopic methods.
We give a variety of detection targets relevant to particle physics for which these systems are uniquely poised to contribute.
arXiv Detail & Related papers (2022-03-14T16:29:19Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.